Dimethylallyl pyrophosphate

Dimethylallyl pyrophosphate is a lipid of Prenol Lipids (PR) class. Dimethylallyl pyrophosphate is associated with abnormalities such as Consumption-archaic term for TB and Wiskott-Aldrich Syndrome. The involved functions are known as Anabolism, Biochemical Pathway, Oxidation, Process and Chelating Activity [MoA]. Dimethylallyl pyrophosphate often locates in Chloroplasts, Plastids, chloroplast stroma, Cytosol and Cell membrane. The associated genes with Dimethylallyl pyrophosphate are IRF6 wt Allele and ADRBK1 gene. The related lipids are Sterols.

Cross Reference

Introduction

To understand associated biological information of Dimethylallyl pyrophosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Dimethylallyl pyrophosphate?

Dimethylallyl pyrophosphate is suspected in and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Dimethylallyl pyrophosphate

MeSH term MeSH ID Detail
Melanoma D008545 69 associated lipids
Total 1

PubChem Associated disorders and diseases

What pathways are associated with Dimethylallyl pyrophosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Dimethylallyl pyrophosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Dimethylallyl pyrophosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Dimethylallyl pyrophosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Dimethylallyl pyrophosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Dimethylallyl pyrophosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Dimethylallyl pyrophosphate?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Dimethylallyl pyrophosphate

Download all related citations
Per page 10 20 50 100 | Total 520
Authors Title Published Journal PubMed Link
Ma Y et al. Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza. 2012 J. Exp. Bot. pmid:22291132
Span I et al. Crystal structures of mutant IspH proteins reveal a rotation of the substrate's hydroxymethyl group during catalysis. 2012 J. Mol. Biol. pmid:22137895
Angaman DM et al. Precursor uptake assays and metabolic analyses in isolated tomato fruit chromoplasts. 2012 Plant Methods pmid:22243738
Yu X et al. Biochemical characterization of indole prenyltransferases: filling the last gap of prenylation positions by a 5-dimethylallyltryptophan synthase from Aspergillus clavatus. 2012 J. Biol. Chem. pmid:22123822
Wollinsky B et al. Breaking the regioselectivity of indole prenyltransferases: identification of regular C3-prenylated hexahydropyrrolo[2,3-b]indoles as side products of the regular C2-prenyltransferase FtmPT1. 2012 Org. Biomol. Chem. pmid:23090579
Nagel R et al. Nonradioactive assay for detecting isoprenyl diphosphate synthase activity in crude plant extracts using liquid chromatography coupled with tandem mass spectrometry. 2012 Anal. Biochem. pmid:22266300
Green SA et al. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis). 2012 J. Exp. Bot. pmid:22162874
Faraldos JA et al. Probing the mechanism of 1,4-conjugate elimination reactions catalyzed by terpene synthases. 2012 J. Am. Chem. Soc. pmid:23214943
Türsen U Pathophysiology of the Behçet's Disease. 2012 Patholog Res Int pmid:21977335
Aros D et al. Volatile emissions of scented Alstroemeria genotypes are dominated by terpenes, and a myrcene synthase gene is highly expressed in scented Alstroemeria flowers. 2012 J. Exp. Bot. pmid:22268153
Li Z et al. Effect of temperature on postillumination isoprene emission in oak and poplar. 2011 Plant Physiol. pmid:21177471
Tijerino A et al. Overexpression of the Trichoderma brevicompactum tri5 gene: effect on the expression of the trichodermin biosynthetic genes and on tomato seedlings. 2011 Toxins (Basel) pmid:22069764
Emma F et al. Renal mitochondrial cytopathies. 2011 Int J Nephrol pmid:21811680
Bleeker PM et al. RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. 2011 Plant Mol. Biol. pmid:21818683
Bonitz T et al. Evolutionary relationships of microbial aromatic prenyltransferases. 2011 PLoS ONE pmid:22140437
Battilana J et al. Functional effect of grapevine 1-deoxy-D-xylulose 5-phosphate synthase substitution K284N on Muscat flavour formation. 2011 J. Exp. Bot. pmid:21868399
Zeng Y et al. A proteomic analysis of the chromoplasts isolated from sweet orange fruits [Citrus sinensis (L.) Osbeck]. 2011 J. Exp. Bot. pmid:21841170
Muraguchi T et al. Polished rice as natural sources of cancer-preventing geranylgeranoic acid. 2011 J Clin Biochem Nutr pmid:21765600
Clastre M et al. Subcellular evidence for the involvement of peroxisomes in plant isoprenoid biosynthesis. 2011 Plant Signal Behav pmid:22080790
Jang HJ et al. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. 2011 Microb. Cell Fact. pmid:21801353