Sphinganine

Sphinganine is a lipid of Sphingolipids (SP) class. Sphinganine is associated with abnormalities such as Sphingolipidoses, CLEFT LIP, CONGENITAL HEALED, Aortic aneurysm, familial thoracic 4, Morphologically altered structure and Atherosclerosis. The involved functions are known as Transcription, Genetic, Signal, Muscle Contraction, biological adaptation to stress and Gene Expression. Sphinganine often locates in Tissue membrane, Membrane, Protoplasm, Plasma membrane and Cytoplasmic. The associated genes with Sphinganine are SLC33A1 gene, HM13 gene, P4HTM gene, SPHK1 gene and SPHK2 gene. The related lipids are Sphingolipids, Phosphatidylserines, Sterols, Fatty Acids and inositolphosphorylceramide. The related experimental models are Mouse Model and Knock-out.

Cross Reference

Introduction

To understand associated biological information of Sphinganine, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Sphinganine?

Sphinganine is suspected in Pulmonary Edema, Morphologically altered structure, Infection, HIV Infections, Pulmonary Hypertension, Exanthema and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Sphinganine

MeSH term MeSH ID Detail
Abortion, Spontaneous D000022 12 associated lipids
Swine Diseases D013553 16 associated lipids
Scleroderma, Systemic D012595 16 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Body Weight D001835 333 associated lipids
Total 5

PubChem Associated disorders and diseases

What pathways are associated with Sphinganine

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Sphinganine?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Sphinganine?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Sphinganine?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Sphinganine?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Sphinganine?

Knock-out

Knock-out are used in the study 'Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast.' (Watanabe R et al., 2002) and Knock-out are used in the study 'Role for de novo sphingoid base biosynthesis in the heat-induced transient cell cycle arrest of Saccharomyces cerevisiae.' (Jenkins GM and Hannun YA, 2001).

Mouse Model

Mouse Model are used in the study 'Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity.' (Hu W et al., 2009).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Sphinganine

Download all related citations
Per page 10 20 50 100 | Total 790
Authors Title Published Journal PubMed Link
Książek M et al. Arteriovenous Sphingosine-1-Phosphate Differences Across Selected Organs of the Rat. 2018 Cell. Physiol. Biochem. pmid:29316552
Jiang R et al. Protein kinase Cα stimulates hypoxia‑induced pulmonary artery smooth muscle cell proliferation in rats through activating the extracellular signal‑regulated kinase 1/2 pathway. 2017 Mol Med Rep pmid:28901444
Song L et al. Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction. 2017 J. Proteome Res. pmid:28722418
Koch A et al. Vitamin D Supplementation Enhances C18(dihydro)ceramide Levels in Type 2 Diabetes Patients. 2017 Int J Mol Sci pmid:28714882
Yanagawa D et al. Synthesis and degradation of long-chain base phosphates affect fumonisin B-induced cell death in Arabidopsis thaliana. 2017 J. Plant Res. pmid:28303405
Chen Y et al. Atherosclerotic dyslipidemia revealed by plasma lipidomics on ApoE mice fed a high-fat diet. 2017 Atherosclerosis pmid:28527370
Školová B et al. Phytosphingosine, sphingosine and dihydrosphingosine ceramides in model skin lipid membranes: permeability and biophysics. 2017 Biochim. Biophys. Acta pmid:28109750
Yu M et al. The Effect of Chinese Herbal Medicine Formula mKG on Allergic Asthma by Regulating Lung and Plasma Metabolic Alternations. 2017 Int J Mol Sci pmid:28287417
Jang Y et al. Gamma-tocotrienol profoundly alters sphingolipids in cancer cells by inhibition of dihydroceramide desaturase and possibly activation of sphingolipid hydrolysis during prolonged treatment. 2017 J. Nutr. Biochem. pmid:28456081
Uemura M et al. Inhibitory Effect of Dihydrosphingosine with α-Tocopherol on Volatile Formation during the Autoxidation of Polyunsaturated Triacylglycerols. 2016 J Oleo Sci pmid:27477074