18194-24-6

18194-24-6 is a lipid of Glycerophospholipids (GP) class. 18194-24-6 is associated with abnormalities such as Cerebrovascular accident, Renal tubular disorder, Atherosclerosis, Hyperlipoproteinemia Type III and Lipid Metabolism Disorders. The involved functions are known as Process, protein folding, Catalyst, Biochemical Pathway and Fold in Medical Device Material. 18194-24-6 often locates in Tissue membrane, Membrane, periplasm, vesicle membrane and outer membrane. The associated genes with 18194-24-6 are Integral Membrane Proteins, Protein Structure, RTN4 gene, RTN4R gene and Protein, Organized by Structure. The related lipids are Micelles, dimyristoylphosphatidylglycerol, 1,2-dihexadecyl-sn-glycero-3-phosphocholine, Unilamellar Vesicles and cholesteryl oleate. The related experimental models are Mouse Model, Arthritis, Adjuvant-Induced, Disease model and Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of 18194-24-6, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18194-24-6?

18194-24-6 is suspected in Atherosclerosis, Cardiovascular Diseases, Dehydration, Abnormal shape, Renal tubular disorder, Hyperlipoproteinemia Type III and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 18194-24-6

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Adenocarcinoma D000230 166 associated lipids
Lung Neoplasms D008175 171 associated lipids
Body Weight D001835 333 associated lipids
Carcinoma D002277 18 associated lipids
Osteosarcoma D012516 50 associated lipids
Lymphoma, Large B-Cell, Diffuse D016403 13 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Alzheimer Disease D000544 76 associated lipids
Arteriosclerosis D001161 86 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Anemia, Hemolytic, Congenital D000745 5 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Tangier Disease D013631 8 associated lipids
HIV Infections D015658 20 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Mycoses D009181 18 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Per page 10 20 50 | Total 22

PubChem Associated disorders and diseases

What pathways are associated with 18194-24-6

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18194-24-6?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 18194-24-6?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18194-24-6?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 18194-24-6?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 18194-24-6?

Mouse Model

Mouse Model are used in the study 'Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes.' (Mishra VK et al., 2006).

Arthritis, Adjuvant-Induced

Arthritis, Adjuvant-Induced are used in the study 'T cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance.' (Bender V et al., 2004).

Disease model

Disease model are used in the study 'Kupffer cells do not play a role in governing the efficacy of liposomal mitoxantrone used to treat a tumor model designed to assess drug delivery to liver.' (Lim HJ et al., 2000).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 18194-24-6

Download all related citations
Per page 10 20 50 100 | Total 3218
Authors Title Published Journal PubMed Link
McCaffrey JE et al. Optimization of bicelle lipid composition and temperature for EPR spectroscopy of aligned membranes. 2015 J. Magn. Reson. pmid:25514061
Alvarez-Figueroa MJ et al. Use of DMPC and DSPC lipids for verapamil and naproxen permeability studies by PAMPA. 2015 Drug Dev Ind Pharm pmid:24568608
Beck Z et al. Detection of liposomal cholesterol and monophosphoryl lipid A by QS-21 saponin and Limulus polyphemus amebocyte lysate. 2015 Biochim. Biophys. Acta pmid:25511587
Kawamoto S et al. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism. 2015 J Chem Phys pmid:26723597
Lee TY et al. Tuning the Photocycle Kinetics of Bacteriorhodopsin in Lipid Nanodiscs. 2015 Biophys. J. pmid:26536266
Shrestha R et al. Measurement of the membrane dipole electric field in DMPC vesicles using vibrational shifts of p-cyanophenylalanine and molecular dynamics simulations. 2015 J Phys Chem B pmid:25602635
Marek A et al. Nanotube array method for studying lipid-induced conformational changes of a membrane protein by solid-state NMR. 2015 Biophys. J. pmid:25564843
Morini MA et al. Influence of temperature, anions and size distribution on the zeta potential of DMPC, DPPC and DMPE lipid vesicles. 2015 Colloids Surf B Biointerfaces pmid:25950496
Misiewicz J et al. Control and role of pH in peptide-lipid interactions in oriented membrane samples. 2015 Biochim. Biophys. Acta pmid:25511586
Alsop RJ et al. Cholesterol expels ibuprofen from the hydrophobic membrane core and stabilizes lamellar phases in lipid membranes containing ibuprofen. 2015 Soft Matter pmid:25915907
Akabori K and Nagle JF Structure of the DMPC lipid bilayer ripple phase. 2015 Soft Matter pmid:25503248
Truszkowski A et al. Mesoscopic simulation of phospholipid membranes, peptides, and proteins with molecular fragment dynamics. 2015 J Chem Inf Model pmid:25902200
Bodor A et al. Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR. 2015 Biochim. Biophys. Acta pmid:25497765
Suwalsky M et al. Interactions of the antiviral and antiparkinson agent amantadine with lipid membranes and human erythrocytes. 2015 Biophys. Chem. pmid:25899993
Sarpietro MG et al. Interaction of α-Hexylcinnamaldehyde with a Biomembrane Model: A Possible MDR Reversal Mechanism. 2015 J. Nat. Prod. pmid:25893313
Å egota S et al. Ligand-Dependent Nanoparticle Clustering within Lipid Membranes Induced by Surrounding Medium. 2015 J Phys Chem B pmid:25831116
Shireen T et al. Lipid composition is an important determinant of antimicrobial activity of alpha-melanocyte stimulating hormone. 2015 Biophys. Chem. pmid:25282663
Perrin BS et al. The Curvature Induction of Surface-Bound Antimicrobial Peptides Piscidin 1 and Piscidin 3 Varies with Lipid Chain Length. 2015 J. Membr. Biol. pmid:25292264
Khajeh A and Modarress H Effect of cholesterol on behavior of 5-fluorouracil (5-FU) in a DMPC lipid bilayer, a molecular dynamics study. 2014 Mar-Apr Biophys. Chem. pmid:24583772
Cuellar LÁ et al. Apolipoprotein A-I configuration and cell cholesterol efflux activity of discoidal lipoproteins depend on the reconstitution process. 2014 Biochim. Biophys. Acta pmid:24201377
Stefanutti E et al. Cationic liposomes formulated with DMPC and a gemini surfactant traverse the cell membrane without causing a significant bio-damage. 2014 Biochim. Biophys. Acta pmid:25017801
Salcedo CL et al. Antiradical activity of gallic acid included in lipid interphases. 2014 Biochim. Biophys. Acta pmid:24998361
Brüning BA et al. Bilayer undulation dynamics in unilamellar phospholipid vesicles: effect of temperature, cholesterol and trehalose. 2014 Biochim. Biophys. Acta pmid:24950248
Van Oosten B et al. Small molecule interaction with lipid bilayers: a molecular dynamics study of chlorhexidine. 2014 J. Mol. Graph. Model. pmid:24440582
Klapper Y et al. Mediation of a non-proteolytic activation of complement component C3 by phospholipid vesicles. 2014 Biomaterials pmid:24462362
Sontag TJ and Reardon CA Polymorphisms of mouse apolipoprotein A-II alter its physical and functional nature. 2014 PLoS ONE pmid:24520415
Ichihara H et al. Therapeutic effects of cationic hybrid liposomes on the hepatic metastasis of colon carcinoma along with apoptosis in vivo. 2014 Biol. Pharm. Bull. pmid:24583871
Boscia AL et al. X-ray structure, thermodynamics, elastic properties and MD simulations of cardiolipin/dimyristoylphosphatidylcholine mixed membranes. 2014 Chem. Phys. Lipids pmid:24378240
Miller CM et al. Disorder in cholesterol-binding functionality of CRAC peptides: a molecular dynamics study. 2014 J Phys Chem B pmid:25347282
Hu Y et al. Reconciling structural and thermodynamic predictions using all-atom and coarse-grain force fields: the case of charged oligo-arginine translocation into DMPC bilayers. 2014 J Phys Chem B pmid:25290376
Nguyen D et al. Influence of domain stability on the properties of human apolipoprotein E3 and E4 and mouse apolipoprotein E. 2014 Biochemistry pmid:24871385
Wolf MG et al. Anomalous surface diffusion of protons on lipid membranes. 2014 Biophys. J. pmid:24988343
Grossutti M et al. Spectroscopic and permeation studies of phospholipid bilayers supported by a soft hydrogel scaffold. 2014 Langmuir pmid:25147944
Pinto OA et al. Microthermodynamic interpretation of fluid states from FTIR measurements in lipid membranes: a Monte Carlo study. 2014 J Phys Chem B pmid:25133953
Afri M et al. NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer: Part III: studies on keto esters and acids. 2014 Chem. Phys. Lipids pmid:25064670
Afri M et al. NMR-based molecular ruler for determining the depth of intercalants within the lipid bilayer. Part IV: studies on ketophospholipids. 2014 Chem. Phys. Lipids pmid:25064026
Ramkaran M and Badia A Gel-to-fluid phase transformations in solid-supported phospholipid bilayers assembled by the Langmuir-Blodgett technique: effect of the Langmuir monolayer phase state and molecular density. 2014 J Phys Chem B pmid:25059993
Sharma S et al. A fluorescent nucleic acid nanodevice quantitatively images elevated cyclic adenosine monophosphate in membrane-bound compartments. 2014 Small pmid:25044725
Grosse W et al. Structure-based engineering of a minimal porin reveals loop-independent channel closure. 2014 Biochemistry pmid:24988371
Beneduci A et al. Effect of millimetre waves on phosphatidylcholine membrane models: a non-thermal mechanism of interaction. 2014 Soft Matter pmid:24959858
Braun CJ et al. Pseudo painting/air bubble technique for planar lipid bilayers. 2014 J. Neurosci. Methods pmid:24938397
Vivek HK et al. A facile assay to monitor secretory phospholipase Aâ‚‚ using 8-anilino-1-naphthalenesulfonic acid. 2014 Anal. Biochem. pmid:24915638
Gagnon MC et al. Evaluation of the effect of fluorination on the property of monofluorinated dimyristoylphosphatidylcholines. 2014 Org. Biomol. Chem. pmid:24899513
Serro AP et al. Effect of tetracaine on DMPC and DMPC+cholesterol biomembrane models: liposomes and monolayers. 2014 Colloids Surf B Biointerfaces pmid:24448175
Caruso B et al. Inter-domain interactions in charged lipid monolayers. 2014 J Phys Chem B pmid:24344675
Lee S et al. CHARMM36 united atom chain model for lipids and surfactants. 2014 J Phys Chem B pmid:24341749
Qi H et al. Penetration of three transmembrane segments of Slc11a1 in lipid bilayers. 2014 Spectrochim Acta A Mol Biomol Spectrosc pmid:24299979
Parvizi P et al. Aspects of nonviral gene therapy: correlation of molecular parameters with lipoplex structure and transfection efficacy in pyridinium-based cationic lipids. 2014 Int J Pharm pmid:24296044
Tokudome Y et al. Application of glucosylceramide-based liposomes increased the ceramide content in a three-dimensional cultured skin epidermis. 2014 Skin Pharmacol Physiol pmid:23887587
Furlan AL et al. Membrane lipids protected from oxidation by red wine tannins: a proton NMR study. 2014 Biochimie pmid:25063276