18194-24-6

18194-24-6 is a lipid of Glycerophospholipids (GP) class. 18194-24-6 is associated with abnormalities such as Cerebrovascular accident, Renal tubular disorder, Atherosclerosis, Hyperlipoproteinemia Type III and Lipid Metabolism Disorders. The involved functions are known as Process, protein folding, Catalyst, Biochemical Pathway and Fold in Medical Device Material. 18194-24-6 often locates in Tissue membrane, Membrane, periplasm, vesicle membrane and outer membrane. The associated genes with 18194-24-6 are Integral Membrane Proteins, Protein Structure, RTN4 gene, RTN4R gene and Protein, Organized by Structure. The related lipids are Micelles, dimyristoylphosphatidylglycerol, 1,2-dihexadecyl-sn-glycero-3-phosphocholine, Unilamellar Vesicles and cholesteryl oleate. The related experimental models are Mouse Model, Arthritis, Adjuvant-Induced, Disease model and Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of 18194-24-6, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18194-24-6?

18194-24-6 is suspected in Atherosclerosis, Cardiovascular Diseases, Dehydration, Abnormal shape, Renal tubular disorder, Hyperlipoproteinemia Type III and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 18194-24-6

MeSH term MeSH ID Detail
Lymphoma, Primary Effusion D054685 2 associated lipids
Blastomycosis D001759 5 associated lipids
Anemia, Hemolytic, Congenital D000745 5 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Tangier Disease D013631 8 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Lymphoma, Large B-Cell, Diffuse D016403 13 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Mycoses D009181 18 associated lipids
Carcinoma D002277 18 associated lipids
HIV Infections D015658 20 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Osteosarcoma D012516 50 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Alzheimer Disease D000544 76 associated lipids
Arteriosclerosis D001161 86 associated lipids
Hemolysis D006461 131 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Adenocarcinoma D000230 166 associated lipids
Lung Neoplasms D008175 171 associated lipids
Body Weight D001835 333 associated lipids
Per page 10 20 50 | Total 22

PubChem Associated disorders and diseases

What pathways are associated with 18194-24-6

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18194-24-6?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 18194-24-6?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18194-24-6?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 18194-24-6?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 18194-24-6?

Mouse Model

Mouse Model are used in the study 'Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes.' (Mishra VK et al., 2006).

Arthritis, Adjuvant-Induced

Arthritis, Adjuvant-Induced are used in the study 'T cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance.' (Bender V et al., 2004).

Disease model

Disease model are used in the study 'Kupffer cells do not play a role in governing the efficacy of liposomal mitoxantrone used to treat a tumor model designed to assess drug delivery to liver.' (Lim HJ et al., 2000).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 18194-24-6

Download all related citations
Per page 10 20 50 100 | Total 3218
Authors Title Published Journal PubMed Link
Dadashvand N and Othon CM Temperature dependent heterogeneous rotational correlation in lipids. 2016 Phys Biol pmid:27845924
Dominguez GA et al. Measurement of the bending elastic modulus in unilamellar vesicles membranes by fast field cycling NMR relaxometry. 2016 Chem. Phys. Lipids pmid:27816433
Scheidelaar S et al. Effect of Polymer Composition and pH on Membrane Solubilization by Styrene-Maleic Acid Copolymers. 2016 Biophys. J. pmid:27806279
Barrett MA et al. Alzheimer's peptide amyloid-β, fragment 22-40, perturbs lipid dynamics. 2016 Soft Matter pmid:26646730
Le Roux AL et al. Kinetics characterization of c-Src binding to lipid membranes: Switching from labile to persistent binding. 2016 Colloids Surf B Biointerfaces pmid:26638178
Suzuki M et al. Targeting ceramide synthase 6-dependent metastasis-prone phenotype in lung cancer cells. 2016 J. Clin. Invest. pmid:26650179
Gobrogge CA et al. Temperature Dependent Solvation and Partitioning of Coumarin 152 in Phospholipid Membranes. 2016 J Phys Chem B pmid:26624521
Musatov A et al. Functional and structural evaluation of bovine heart cytochrome c oxidase incorporated into bicelles. 2016 Biochimie pmid:26616009
Davis JH and Komljenović I Nuclear Overhauser effect as a probe of molecular structure, dynamics and order of axially reorienting molecules in membranes. 2016 Biochim. Biophys. Acta pmid:26607012
Muhanna N et al. Multimodal Image-Guided Surgical and Photodynamic Interventions in Head and Neck Cancer: From Primary Tumor to Metastatic Drainage. 2016 Clin. Cancer Res. pmid:26463705
Das A et al. Lipoplex-Mediated Deintercalation of Doxorubicin from Calf Thymus DNA-Doxorubicin Complex. 2016 Langmuir pmid:27465781
Toscano-Flores LG et al. Experimental Determination of High-Order Bending Elastic Constants of Lipid Bilayers. 2016 J Phys Chem B pmid:27267752
Majumdar A and Sarkar M Small Mismatches in Fatty Acyl Tail Lengths Can Effect Non Steroidal Anti-Inflammatory Drug Induced Membrane Fusion. 2016 J Phys Chem B pmid:27153337
Yoshimura H et al. Two-Dimensional Crystallization of P22 Virus-Like Particles. 2016 J Phys Chem B pmid:27125277
Adhikari U et al. Properties of Poloxamer Molecules and Poloxamer Micelles Dissolved in Water and Next to Lipid Bilayers: Results from Computer Simulations. 2016 J Phys Chem B pmid:26719970
Yu T et al. Transport and Organization of Cholesterol in a Planar Solid-Supported Lipid Bilayer Depend on the Phospholipid Flip-Flop Rate. 2016 Langmuir pmid:27756133
Isabettini S et al. Tailoring Bicelle Morphology and Thermal Stability with Lanthanide-Chelating Cholesterol Conjugates. 2016 Langmuir pmid:27529644
Alsop RJ et al. Swelling of phospholipid membranes by divalent metal ions depends on the location of the ions in the bilayers. 2016 Soft Matter pmid:27453289
Zhernenkov M et al. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations. 2016 Nat Commun pmid:27175859
Hasan IY and Mechler A Cholesterol Rich Domains Identified in Unilamellar Supported Biomimetic Membranes via Nano-Viscosity Measurements. 2016 Anal. Chem. pmid:27137411
Briuglia ML et al. Influence of cholesterol on liposome stability and on in vitro drug release. 2015 Drug Deliv Transl Res pmid:25787731
Stepien P et al. Comparative EPR studies on lipid bilayer properties in nanodiscs and liposomes. 2015 Biochim. Biophys. Acta pmid:25306967
Madrid E and Horswell SL Effect of Deuteration on Phase Behavior of Supported Phospholipid Bilayers: A Spectroelectrochemical Study. 2015 Langmuir pmid:26536482
Tanaka M et al. Preparation and Characterization of Reconstituted Lipid-Synthetic Polymer Discoidal Particles. 2015 Langmuir pmid:26531224
Wölk C et al. Investigation of Binary Lipid Mixtures of a Three-Chain Cationic Lipid with Phospholipids Suitable for Gene Delivery. 2015 Bioconjug. Chem. pmid:26471337
Björnerås J et al. Analysing DHPC/DMPC bicelles by diffusion NMR and multivariate decomposition. 2015 Biochim. Biophys. Acta pmid:26341141
Malishev R et al. Toxicity inhibitors protect lipid membranes from disruption by Aβ42. 2015 ACS Chem Neurosci pmid:26317327
Grossutti M et al. Infrared and Fluorescence Spectroscopic Investigations of the Acyl Surface Modification of Hydrogel Beads for the Deposition of a Phospholipid Coating. 2015 Langmuir pmid:26429738
Suwalsky M et al. An in vitro study on the antioxidant capacity of usnic acid on human erythrocytes and molecular models of its membrane. 2015 Biochim. Biophys. Acta pmid:26299817
Schwörer F et al. Surface-Active Lipid Linings under Shear Load--A Combined in-Situ Neutron Reflectivity and ATR-FTIR Study. 2015 Langmuir pmid:26388226
Mineev KS et al. NMR Dynamics of Transmembrane and Intracellular Domains of p75NTR in Lipid-Protein Nanodiscs. 2015 Biophys. J. pmid:26287629
Pham QD et al. Cyclic and Linear Monoterpenes in Phospholipid Membranes: Phase Behavior, Bilayer Structure, and Molecular Dynamics. 2015 Langmuir pmid:26375869
Nagao T et al. Structure and orientation of antibiotic peptide alamethicin in phospholipid bilayers as revealed by chemical shift oscillation analysis of solid state nuclear magnetic resonance and molecular dynamics simulation. 2015 Biochim. Biophys. Acta pmid:26248014
Lai A et al. Centerband-only-detection-of-exchange (31)P nuclear magnetic resonance and phospholipid lateral diffusion: theory, simulation and experiment. 2015 Phys Chem Chem Phys pmid:26352885
Arduin A et al. Regulation of PLCβ2 by the electrostatic and mechanical properties of lipid bilayers. 2015 Sci Rep pmid:26243281
Jubeli E et al. Next generation macrocyclic and acyclic cationic lipids for gene transfer: Synthesis and in vitro evaluation. 2015 Bioorg. Med. Chem. pmid:26346671
Baday S et al. Mechanism of NH4(+) Recruitment and NH3 Transport in Rh Proteins. 2015 Structure pmid:26190573
Ding Y et al. Influence of the lipid membrane environment on structure and activity of the outer membrane protein Ail from Yersinia pestis. 2015 Biochim. Biophys. Acta pmid:25433311
Smrt ST et al. The influenza hemagglutinin fusion domain is an amphipathic helical hairpin that functions by inducing membrane curvature. 2015 J. Biol. Chem. pmid:25398882
Vad BS et al. Phospholipid Ether Linkages Significantly Modulate the Membrane Affinity of the Antimicrobial Peptide Novicidin. 2015 J. Membr. Biol. pmid:25801603
Stewart SE et al. Assembly of streptolysin O pores assessed by quartz crystal microbalance and atomic force microscopy provides evidence for the formation of anchored but incomplete oligomers. 2015 Biochim. Biophys. Acta pmid:25312695
Shen H et al. An anisotropic coarse-grained model based on Gay-Berne and electric multipole potentials and its application to simulate a DMPC bilayer in an implicit solvent model. 2015 J Comput Chem pmid:25788250
Reddy ST and Swamy MJ Synthesis, physicochemical characterization and membrane interactions of a homologous series of N-acylserotonins: Bioactive, endogenous conjugates of serotonin with fatty acids. 2015 Biochim. Biophys. Acta pmid:25291601
Sharma VK et al. Nanoscopic dynamics of phospholipid in unilamellar vesicles: effect of gel to fluid phase transition. 2015 J Phys Chem B pmid:25738532
Suwalsky M et al. Morphological Effects Induced In Vitro by Propranolol on Human Erythrocytes. 2015 J. Membr. Biol. pmid:25724773
Suwalsky M et al. In vitro protective effects of resveratrol against oxidative damage in human erythrocytes. 2015 Biochim. Biophys. Acta pmid:25268679
van Rooij T et al. Non-linear response and viscoelastic properties of lipid-coated microbubbles: DSPC versus DPPC. 2015 Ultrasound Med Biol pmid:25724308
Lechner BD et al. Temperature-dependent in-plane structure formation of an X-shaped bolapolyphile within lipid bilayers. 2015 Langmuir pmid:25695502
Aoyagi S et al. ToF-SIMS observation for evaluating the interaction between amyloid β and lipid membranes. 2015 Anal Bioanal Chem pmid:25687682
Madej BD et al. A Parameterization of Cholesterol for Mixed Lipid Bilayer Simulation within the Amber Lipid14 Force Field. 2015 J Phys Chem B pmid:26359797