18194-24-6

18194-24-6 is a lipid of Glycerophospholipids (GP) class. 18194-24-6 is associated with abnormalities such as Cerebrovascular accident, Renal tubular disorder, Atherosclerosis, Hyperlipoproteinemia Type III and Lipid Metabolism Disorders. The involved functions are known as Process, protein folding, Catalyst, Biochemical Pathway and Fold in Medical Device Material. 18194-24-6 often locates in Tissue membrane, Membrane, periplasm, vesicle membrane and outer membrane. The associated genes with 18194-24-6 are Integral Membrane Proteins, Protein Structure, RTN4 gene, RTN4R gene and Protein, Organized by Structure. The related lipids are Micelles, dimyristoylphosphatidylglycerol, 1,2-dihexadecyl-sn-glycero-3-phosphocholine, Unilamellar Vesicles and cholesteryl oleate. The related experimental models are Mouse Model, Arthritis, Adjuvant-Induced, Disease model and Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of 18194-24-6, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18194-24-6?

18194-24-6 is suspected in Atherosclerosis, Cardiovascular Diseases, Dehydration, Abnormal shape, Renal tubular disorder, Hyperlipoproteinemia Type III and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 18194-24-6

MeSH term MeSH ID Detail
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Lymphoma, Primary Effusion D054685 2 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Lymphoma, Large B-Cell, Diffuse D016403 13 associated lipids
HIV Infections D015658 20 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Tangier Disease D013631 8 associated lipids
Osteosarcoma D012516 50 associated lipids
Neuroblastoma D009447 66 associated lipids
Mycoses D009181 18 associated lipids
Lung Neoplasms D008175 171 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Carcinoma D002277 18 associated lipids
Body Weight D001835 333 associated lipids
Blastomycosis D001759 5 associated lipids
Arteriosclerosis D001161 86 associated lipids
Anemia, Hemolytic, Congenital D000745 5 associated lipids
Alzheimer Disease D000544 76 associated lipids
Adenocarcinoma D000230 166 associated lipids
Per page 10 20 50 | Total 22

PubChem Associated disorders and diseases

What pathways are associated with 18194-24-6

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18194-24-6?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 18194-24-6?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18194-24-6?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 18194-24-6?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 18194-24-6?

Mouse Model

Mouse Model are used in the study 'Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes.' (Mishra VK et al., 2006).

Arthritis, Adjuvant-Induced

Arthritis, Adjuvant-Induced are used in the study 'T cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance.' (Bender V et al., 2004).

Disease model

Disease model are used in the study 'Kupffer cells do not play a role in governing the efficacy of liposomal mitoxantrone used to treat a tumor model designed to assess drug delivery to liver.' (Lim HJ et al., 2000).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 18194-24-6

Download all related citations
Per page 10 20 50 100 | Total 3218
Authors Title Published Journal PubMed Link
Beevers AJ and Kukol A Conformational flexibility of the peptide hormone ghrelin in solution and lipid membrane bound: a molecular dynamics study. 2006 J. Biomol. Struct. Dyn. pmid:16363872
Kothekar V 260 ps molecular dynamics simulation of substance P with hydrated dimyristoyl phosphatidyl choline bilayer. 1996 J. Biomol. Struct. Dyn. pmid:8906881
Yu K et al. Interactions between mastoparan B and the membrane studied by 1H NMR spectroscopy. 2001 J. Biomol. Struct. Dyn. pmid:11245254
Roy D and Mukhopadhyay C GD1a in phospholipid bilayer: a molecular dynamics simulation. 2001 J. Biomol. Struct. Dyn. pmid:11245258
Aller P et al. Transmembrane helix packing of ErbB/Neu receptor in membrane environment: a molecular dynamics study. 2006 J. Biomol. Struct. Dyn. pmid:17054379
Kothekar V et al. Molecular dynamics simulation of conformational flexibility of alamethicin fragments in aqueous and membranous environment. 1996 J. Biomol. Struct. Dyn. pmid:9016408
Chandrasekhar I and Gaber BP Stabilization of the bio-membrane by small molecules: interaction of trehalose with the phospholipid bilayer. 1988 J. Biomol. Struct. Dyn. pmid:3271505
Samna Soumana O et al. Transmembrane peptides from tyrosine kinase receptor. Mutation-related behavior in a lipid bilayer investigated by molecular dynamics simulations. 2005 J. Biomol. Struct. Dyn. pmid:15918680
Zandomeneghi G et al. NMR of bicelles: orientation and mosaic spread of the liquid-crystal director under sample rotation. 2003 J. Biomol. NMR pmid:12652120
Zandomeneghi G et al. Switched-angle spinning applied to bicelles containing phospholipid-associated peptides. 2003 J. Biomol. NMR pmid:12652121
Chou JJ et al. Characterization of phospholipid mixed micelles by translational diffusion. 2004 J. Biomol. NMR pmid:15213428
Bárány-Wallje E et al. Dynamics of transportan in bicelles is surface charge dependent. 2006 J. Biomol. NMR pmid:16705358
Ottiger M and Bax A Bicelle-based liquid crystals for NMR-measurement of dipolar couplings at acidic and basic pH values. 1999 J. Biomol. NMR pmid:10070759
Mesleh MF et al. Myristoylation as a general method for immobilization and alignment of soluble proteins for solid-state NMR structural studies. 2003 J. Biomol. NMR pmid:12566999
Soubias O et al. High resolution 13C NMR spectra on oriented lipid bilayers: from quantifying the various sources of line broadening to performing 2D experiments with 0.2-0.3 ppm resolution in the carbon dimension. 2002 J. Biomol. NMR pmid:12449415
Todokoro Y et al. Structure analysis of membrane-reconstituted subunit c-ring of E. coli H+-ATP synthase by solid-state NMR. 2010 J. Biomol. NMR pmid:20596883
Lancelot N et al. Applications of variable-angle sample spinning experiments to the measurement of scaled residual dipolar couplings and 15N CSA in soluble proteins. 2005 J. Biomol. NMR pmid:16331420
Bax A and Tjandra N High-resolution heteronuclear NMR of human ubiquitin in an aqueous liquid crystalline medium. 1997 J. Biomol. NMR pmid:9390407
Bayer P et al. Refinement of the structure of protein-RNA complexes by residual dipolar coupling analysis. 1999 J. Biomol. NMR pmid:10427742
Ottiger M and Bax A Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. 1998 J. Biomol. NMR pmid:9835045
Losonczi JA and Prestegard JH Improved dilute bicelle solutions for high-resolution NMR of biological macromolecules. 1998 J. Biomol. NMR pmid:9835051
Tian F et al. Sign determination of dipolar couplings in field-oriented bicelles by variable angle sample spinning (VASS). 1999 J. Biomol. NMR pmid:10605087
Brunner E et al. Pressure-stability of phospholipid bicelles: measurement of residual dipolar couplings under extreme conditions. 2001 J. Biomol. NMR pmid:11727981
Salgado J et al. Membrane-bound structure and alignment of the antimicrobial beta-sheet peptide gramicidin S derived from angular and distance constraints by solid state 19F-NMR. 2001 J. Biomol. NMR pmid:11775737
Tsui V et al. Assessment of zinc finger orientations by residual dipolar coupling constants. 2000 J. Biomol. NMR pmid:10718608
Fu Y and Wand AJ Partial alignment and measurement of residual dipolar couplings of proteins under high hydrostatic pressure. 2013 J. Biomol. NMR pmid:23807390
Hsieh YH and Chou CY Structural and functional characterization of human apolipoprotein E 72-166 peptides in both aqueous and lipid environments. 2011 J. Biomed. Sci. pmid:21219628
Paradiso P et al. Drug release from liposome coated hydrogels for soft contact lenses: the blinking and temperature effect. 2017 J. Biomed. Mater. Res. Part B Appl. Biomater. pmid:27192551
Martin JD et al. Structure and membrane affinity of new amphiphilic siderophores produced by Ochrobactrum sp. SP18. 2006 J. Biol. Inorg. Chem. pmid:16791646
Epand RM et al. Properties of lipid complexes with amphipathic helix-forming peptides. Role of distribution of peptide charges. 1989 J. Biol. Chem. pmid:2925658
Tremouilhac P et al. Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin. 2006 J. Biol. Chem. pmid:16877761
Ledford AS et al. Self-association and lipid binding properties of the lipoprotein initiating domain of apolipoprotein B. 2006 J. Biol. Chem. pmid:16407215
Dufour JP and Tsong TY Plasma membrane ATPase of yeast. Activation and interaction with dimyristoylphosphatidylcholine vesicles. 1981 J. Biol. Chem. pmid:6450760
Teng Q and Scarlata S Effect of high pressure on the association of melittin to membranes. 1993 J. Biol. Chem. pmid:8509383
Raussens V et al. Hydrogen/deuterium exchange kinetics of apolipophorin-III in lipid-free and phospholipid-bound states. An analysis by Fourier transform infrared spectroscopy. 1996 J. Biol. Chem. pmid:8798499
Feix JB et al. Direct observation of singlet oxygen production by merocyanine 540 associated with phosphatidylcholine liposomes. 1988 J. Biol. Chem. pmid:3182846
Uratani Y and Cramer WA Reconstitution of colicin E1 into dimyristoylphosphatidylcholine membrane vesicles. 1981 J. Biol. Chem. pmid:6163776
Argyri L et al. Molecular basis for increased risk for late-onset Alzheimer disease due to the naturally occurring L28P mutation in apolipoprotein E4. 2014 J. Biol. Chem. pmid:24644280
Scotto AW and Zakim D Reconstitution of membrane proteins. Spontaneous incorporation of integral membrane proteins into preformed bilayers of pure phospholipid. 1988 J. Biol. Chem. pmid:3142879
Mantulin WW et al. Reassembled model lipoproteins. Lipid dynamics in recombinants of human apolipoprotein A-II and dimyristoylphosphatidylcholine. 1981 J. Biol. Chem. pmid:6793587
Randazzo PA et al. Activation of ADP-ribosylation factor by Golgi membranes. Evidence for a brefeldin A- and protease-sensitive activating factor on Golgi membranes. 1993 J. Biol. Chem. pmid:8486645
Ebina S et al. Chemical modification of bovine pancreatic trypsin inhibitor for single site coupling of immunogenic peptides for NMR conformational analysis. 1989 J. Biol. Chem. pmid:2470736
Arinç E et al. Topography of the C terminus of cytochrome b5 tightly bound to dimyristoylphosphatidylcholine vesicles. 1987 J. Biol. Chem. pmid:3680211
Riddell DR et al. Apolipoprotein E inhibits platelet aggregation through the L-arginine:nitric oxide pathway. Implications for vascular disease. 1997 J. Biol. Chem. pmid:8995232
Christensen K et al. Binding of steroidogenic acute regulatory protein to synthetic membranes suggests an active molten globule. 2001 J. Biol. Chem. pmid:11279152
Steinmetz A et al. Human apolipoprotein A-IV binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells. 1990 J. Biol. Chem. pmid:2159462
Anantharamaiah GM et al. Studies of synthetic peptide analogs of the amphipathic helix. Structure of complexes with dimyristoyl phosphatidylcholine. 1985 J. Biol. Chem. pmid:4019510
Mishra VK et al. Interactions of synthetic peptide analogs of the class A amphipathic helix with lipids. Evidence for the snorkel hypothesis. 1994 J. Biol. Chem. pmid:8125930
Raussens V et al. Alignment of the apolipophorin-III alpha-helices in complex with dimyristoylphosphatidylcholine. A unique spatial orientation. 1995 J. Biol. Chem. pmid:7759500
Miyazaki A et al. Acetylated low density lipoprotein reduces its ligand activity for the scavenger receptor after interaction with reconstituted high density lipoprotein. 1994 J. Biol. Chem. pmid:8106510