18194-24-6

18194-24-6 is a lipid of Glycerophospholipids (GP) class. 18194-24-6 is associated with abnormalities such as Cerebrovascular accident, Renal tubular disorder, Atherosclerosis, Hyperlipoproteinemia Type III and Lipid Metabolism Disorders. The involved functions are known as Process, protein folding, Catalyst, Biochemical Pathway and Fold in Medical Device Material. 18194-24-6 often locates in Tissue membrane, Membrane, periplasm, vesicle membrane and outer membrane. The associated genes with 18194-24-6 are Integral Membrane Proteins, Protein Structure, RTN4 gene, RTN4R gene and Protein, Organized by Structure. The related lipids are Micelles, dimyristoylphosphatidylglycerol, 1,2-dihexadecyl-sn-glycero-3-phosphocholine, Unilamellar Vesicles and cholesteryl oleate. The related experimental models are Mouse Model, Arthritis, Adjuvant-Induced, Disease model and Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of 18194-24-6, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18194-24-6?

18194-24-6 is suspected in Atherosclerosis, Cardiovascular Diseases, Dehydration, Abnormal shape, Renal tubular disorder, Hyperlipoproteinemia Type III and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 18194-24-6

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Adenocarcinoma D000230 166 associated lipids
Lung Neoplasms D008175 171 associated lipids
Body Weight D001835 333 associated lipids
Carcinoma D002277 18 associated lipids
Osteosarcoma D012516 50 associated lipids
Lymphoma, Large B-Cell, Diffuse D016403 13 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Alzheimer Disease D000544 76 associated lipids
Arteriosclerosis D001161 86 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Anemia, Hemolytic, Congenital D000745 5 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Tangier Disease D013631 8 associated lipids
HIV Infections D015658 20 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Mycoses D009181 18 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Blastomycosis D001759 5 associated lipids
Lymphoma, Primary Effusion D054685 2 associated lipids
Per page 10 20 50 | Total 22

PubChem Associated disorders and diseases

What pathways are associated with 18194-24-6

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18194-24-6?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 18194-24-6?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18194-24-6?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 18194-24-6?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 18194-24-6?

Mouse Model

Mouse Model are used in the study 'Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes.' (Mishra VK et al., 2006).

Arthritis, Adjuvant-Induced

Arthritis, Adjuvant-Induced are used in the study 'T cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance.' (Bender V et al., 2004).

Disease model

Disease model are used in the study 'Kupffer cells do not play a role in governing the efficacy of liposomal mitoxantrone used to treat a tumor model designed to assess drug delivery to liver.' (Lim HJ et al., 2000).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 18194-24-6

Download all related citations
Per page 10 20 50 100 | Total 3218
Authors Title Published Journal PubMed Link
Dadashvand N and Othon CM Temperature dependent heterogeneous rotational correlation in lipids. 2016 Phys Biol pmid:27845924
Dominguez GA et al. Measurement of the bending elastic modulus in unilamellar vesicles membranes by fast field cycling NMR relaxometry. 2016 Chem. Phys. Lipids pmid:27816433
Furlan AL et al. Grape tannin catechin and ethanol fluidify oral membrane mimics containing moderate amounts of cholesterol: Implications on wine tasting? 2016 Biochimie pmid:27402289
Suwalsky M et al. Effects of Thimerosal on Lipid Bilayers and Human Erythrocytes: An In Vitro Study. 2016 J. Membr. Biol. pmid:27738716
Stetten AZ et al. Enabling Marangoni flow at air-liquid interfaces through deposition of aerosolized lipid dispersions. 2016 J Colloid Interface Sci pmid:27623189
He L et al. A Novel Matrix for Immobilizing Protein: Supported Hybrid Nano C60-Lipid Membrane. 2016 J Nanosci Nanotechnol pmid:27427649
La Rosa C et al. Lipid-assisted protein transport: A diffusion-reaction model supported by kinetic experiments and molecular dynamics simulations. 2016 J Chem Phys pmid:27179503
Möller MN et al. Solubility and diffusion of oxygen in phospholipid membranes. 2016 Biochim. Biophys. Acta pmid:27614191
Aoun B et al. Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions. 2016 Eur Phys J E Soft Matter pmid:27112937
Neumann A et al. Membrane Sterols Modulate the Binding Mode of Amphotericin B without Affecting Its Affinity for a Lipid Bilayer. 2016 Langmuir pmid:27007267
Scheidelaar S et al. Effect of Polymer Composition and pH on Membrane Solubilization by Styrene-Maleic Acid Copolymers. 2016 Biophys. J. pmid:27806279
Palacios-Ortega J et al. Regulation of Sticholysin II-Induced Pore Formation by Lipid Bilayer Composition, Phase State, and Interfacial Properties. 2016 Langmuir pmid:27003246
Zhang T et al. Membrane Binding and Oligomerization of the Lipopeptide A54145 Studied by Pyrene Fluorescence. 2016 Biophys. J. pmid:27653485
Yang J et al. Free energy landscapes of sodium ions bound to DMPC-cholesterol membrane surfaces at infinite dilution. 2016 Phys Chem Chem Phys pmid:26967312
Rai DK et al. The Interaction of Melittin with Dimyristoyl Phosphatidylcholine-Dimyristoyl Phosphatidylserine Lipid Bilayer Membranes. 2016 Biochim. Biophys. Acta pmid:27526681
Grau-Campistany A et al. Extending the Hydrophobic Mismatch Concept to Amphiphilic Membranolytic Peptides. 2016 J Phys Chem Lett pmid:26963560
Almeida C et al. Membrane re-arrangements and rippled phase stabilisation by the cell penetrating peptide penetratin. 2016 Biochim. Biophys. Acta pmid:27475297
Sierra MB et al. The use of zeta potential as a tool to study phase transitions in binary phosphatidylcholines mixtures. 2016 Colloids Surf B Biointerfaces pmid:26954086
Agopian A et al. Structure and interaction with lipid membrane models of Semliki Forest virus fusion peptide. 2016 Biochim. Biophys. Acta pmid:27425030
Nowak B et al. Solid-Supported Lipid Multilayers under High Hydrostatic Pressure. 2016 Langmuir pmid:26927365
Mei X et al. Probing the C-terminal domain of lipid-free apoA-I demonstrates the vital role of the H10B sequence repeat in HDL formation. 2016 J. Lipid Res. pmid:27317763
Park YH et al. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots. 2016 Electrophoresis pmid:26920999
Min D et al. A simple DNA handle attachment method for single molecule mechanical manipulation experiments. 2016 Protein Sci. pmid:27222403
Matyszewska D et al. PM-IRRAS Studies of DMPC Bilayers Supported on Au(111) Electrodes Modified with Hydrophilic Monolayers of Thioglucose. 2016 Langmuir pmid:26829620
Ma J et al. Stable Small Composite Microbubbles Decorated with Magnetite Nanoparticles - A Synergistic Effect between Surfactant Molecules and Nanoparticles. 2016 J Oleo Sci pmid:27087000
Sivaramakrishna D and Swamy MJ Synthesis, characterization and thermotropic phase behavior of a homologous series of N-acyl-L-alaninols and interaction of N-myristoyl L-alaninol with dimyristoylphosphatidylcholine. 2016 Chem. Phys. Lipids pmid:26827903
Lee CT et al. Simulation-Based Approaches for Determining Membrane Permeability of Small Compounds. 2016 J Chem Inf Model pmid:27043429
Moniz T et al. NMR study of the interaction of fluorescent 3-hydroxy-4-pyridinone chelators with DMPC liposomes. 2016 Phys Chem Chem Phys pmid:26812137
Keidel A et al. Direct observation of intermediate states in model membrane fusion. 2016 Sci Rep pmid:27029285
Rifici S et al. Influence of Alcohols on the Lateral Diffusion in Phospholipid Membranes. 2016 J Phys Chem B pmid:26807655
Khan HM et al. A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding. 2016 Biophys. J. pmid:27028646
Lockhart C and Klimov DK The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer. 2016 Biochim. Biophys. Acta pmid:26947182
Hisao GS et al. An efficient method and device for transfer of semisolid materials into solid-state NMR spectroscopy rotors. 2016 J. Magn. Reson. pmid:26905816
Mura M et al. The effect of amidation on the behaviour of antimicrobial peptides. 2016 Eur. Biophys. J. pmid:26745958
Gobrogge CA et al. Temperature Dependent Solvation and Partitioning of Coumarin 152 in Phospholipid Membranes. 2016 J Phys Chem B pmid:26624521
Davis JH and Komljenović I Nuclear Overhauser effect as a probe of molecular structure, dynamics and order of axially reorienting molecules in membranes. 2016 Biochim. Biophys. Acta pmid:26607012
Muhanna N et al. Multimodal Image-Guided Surgical and Photodynamic Interventions in Head and Neck Cancer: From Primary Tumor to Metastatic Drainage. 2016 Clin. Cancer Res. pmid:26463705
Korchowiec B et al. The selective interactions of cationic tetra-p-guanidinoethylcalix[4]arene with lipid membranes: theoretical and experimental model studies. 2016 Soft Matter pmid:26451711
Das A et al. Lipoplex-Mediated Deintercalation of Doxorubicin from Calf Thymus DNA-Doxorubicin Complex. 2016 Langmuir pmid:27465781
Pluhackova K et al. A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers. 2016 J Phys Chem B pmid:27035634
Yoshimura H et al. Two-Dimensional Crystallization of P22 Virus-Like Particles. 2016 J Phys Chem B pmid:27125277
Adhikari U et al. Properties of Poloxamer Molecules and Poloxamer Micelles Dissolved in Water and Next to Lipid Bilayers: Results from Computer Simulations. 2016 J Phys Chem B pmid:26719970
McClary WD et al. Membrane Fluidity Modulates Thermal Stability and Ligand Binding of Cytochrome P4503A4 in Lipid Nanodiscs. 2016 Biochemistry pmid:27782404
Hirst DJ et al. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion. 2016 Biochim. Biophys. Acta pmid:27163492
Bello OD et al. Using ApoE Nanolipoprotein Particles To Analyze SNARE-Induced Fusion Pores. 2016 Langmuir pmid:26972604
Salnikov ES et al. Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy. 2016 Sci Rep pmid:26876950
Alsop RJ et al. Swelling of phospholipid membranes by divalent metal ions depends on the location of the ions in the bilayers. 2016 Soft Matter pmid:27453289
Zhernenkov M et al. Revealing the mechanism of passive transport in lipid bilayers via phonon-mediated nanometre-scale density fluctuations. 2016 Nat Commun pmid:27175859
Hasan IY and Mechler A Cholesterol Rich Domains Identified in Unilamellar Supported Biomimetic Membranes via Nano-Viscosity Measurements. 2016 Anal. Chem. pmid:27137411
de Athayde Moncorvo Collado A et al. Cholesterol induces surface localization of polyphenols in model membranes thus enhancing vesicle stability against lysozyme, but reduces protection of distant double bonds from reactive-oxygen species. 2016 Biochim. Biophys. Acta pmid:27063609