18194-24-6

18194-24-6 is a lipid of Glycerophospholipids (GP) class. 18194-24-6 is associated with abnormalities such as Cerebrovascular accident, Renal tubular disorder, Atherosclerosis, Hyperlipoproteinemia Type III and Lipid Metabolism Disorders. The involved functions are known as Process, protein folding, Catalyst, Biochemical Pathway and Fold in Medical Device Material. 18194-24-6 often locates in Tissue membrane, Membrane, periplasm, vesicle membrane and outer membrane. The associated genes with 18194-24-6 are Integral Membrane Proteins, Protein Structure, RTN4 gene, RTN4R gene and Protein, Organized by Structure. The related lipids are Micelles, dimyristoylphosphatidylglycerol, 1,2-dihexadecyl-sn-glycero-3-phosphocholine, Unilamellar Vesicles and cholesteryl oleate. The related experimental models are Mouse Model, Arthritis, Adjuvant-Induced, Disease model and Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of 18194-24-6, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18194-24-6?

18194-24-6 is suspected in Atherosclerosis, Cardiovascular Diseases, Dehydration, Abnormal shape, Renal tubular disorder, Hyperlipoproteinemia Type III and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 18194-24-6

MeSH term MeSH ID Detail
HIV Infections D015658 20 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Osteosarcoma D012516 50 associated lipids
Neuroblastoma D009447 66 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Alzheimer Disease D000544 76 associated lipids
Arteriosclerosis D001161 86 associated lipids
Hemolysis D006461 131 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Adenocarcinoma D000230 166 associated lipids
Per page 10 20 50 | Total 22

PubChem Associated disorders and diseases

What pathways are associated with 18194-24-6

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18194-24-6?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 18194-24-6?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18194-24-6?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 18194-24-6?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 18194-24-6?

Mouse Model

Mouse Model are used in the study 'Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes.' (Mishra VK et al., 2006).

Arthritis, Adjuvant-Induced

Arthritis, Adjuvant-Induced are used in the study 'T cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance.' (Bender V et al., 2004).

Disease model

Disease model are used in the study 'Kupffer cells do not play a role in governing the efficacy of liposomal mitoxantrone used to treat a tumor model designed to assess drug delivery to liver.' (Lim HJ et al., 2000).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 18194-24-6

Download all related citations
Per page 10 20 50 100 | Total 3218
Authors Title Published Journal PubMed Link
Tsai HH et al. Geometrical effects of phospholipid olefinic bonds on the structure and dynamics of membranes: A molecular dynamics study. 2015 Biochim. Biophys. Acta pmid:25732027
Kawamoto S et al. Coarse-grained molecular dynamics study of membrane fusion: Curvature effects on free energy barriers along the stalk mechanism. 2015 J Chem Phys pmid:26723597
Wang T and Hong M Investigation of the curvature induction and membrane localization of the influenza virus M2 protein using static and off-magic-angle spinning solid-state nuclear magnetic resonance of oriented bicelles. 2015 Biochemistry pmid:25774685
Aoki A et al. Preparation of pH-sensitive anionic liposomes designed for drug delivery system (DDS) application. 2015 J Oleo Sci pmid:25748383
Hasan IY and Mechler A Viscoelastic changes measured in partially suspended single bilayer membranes. 2015 Soft Matter pmid:26073288
Lai G et al. Kinetics of lipid mixing between bicelles and nanolipoprotein particles. 2015 Biophys. Chem. pmid:25660392
Bousova K et al. PIP2 and PIP3 interact with N-terminus region of TRPM4 channel. 2015 Biophys. Chem. pmid:26071843
Dies H et al. The organization of melatonin in lipid membranes. 2015 Biochim. Biophys. Acta pmid:25602914
Debnath A and Schäfer LV Structure and Dynamics of Phospholipid Nanodiscs from All-Atom and Coarse-Grained Simulations. 2015 J Phys Chem B pmid:25978497
Shrestha R et al. Measurement of the membrane dipole electric field in DMPC vesicles using vibrational shifts of p-cyanophenylalanine and molecular dynamics simulations. 2015 J Phys Chem B pmid:25602635
Upadhyay SK et al. Insights from Micro-second Atomistic Simulations of Melittin in Thin Lipid Bilayers. 2015 J. Membr. Biol. pmid:25963936
Marek A et al. Nanotube array method for studying lipid-induced conformational changes of a membrane protein by solid-state NMR. 2015 Biophys. J. pmid:25564843
Morini MA et al. Influence of temperature, anions and size distribution on the zeta potential of DMPC, DPPC and DMPE lipid vesicles. 2015 Colloids Surf B Biointerfaces pmid:25950496
Drazenovic J et al. Lipid exchange and transfer on nanoparticle supported lipid bilayers: effect of defects, ionic strength, and size. 2015 Langmuir pmid:25425021
Cho H et al. Microfluidic platforms with monolithically integrated hierarchical apertures for the facile and rapid formation of cargo-carrying vesicles. 2015 Lab Chip pmid:25422046
Cutró AC et al. Effect of phloretin on the binding of 1-anilino-8-naphtalene sulfonate (ANS) to 1,2-Dimyristoyl-sn-glycero-3-phosphocoline (DMPC) vesicles in the gel and liquid-crystalline state. 2015 J. Membr. Biol. pmid:25380679
Ferreira M and Gameiro P Ciprofloxacin metalloantibiotic: an effective antibiotic with an influx route strongly dependent on lipid interaction? 2015 J. Membr. Biol. pmid:25378125
Shireen T et al. Lipid composition is an important determinant of antimicrobial activity of alpha-melanocyte stimulating hormone. 2015 Biophys. Chem. pmid:25282663
Lee H Effects of imidazolium-based ionic surfactants on the size and dynamics of phosphatidylcholine bilayers with saturated and unsaturated chains. 2015 J. Mol. Graph. Model. pmid:26055631
Perrin BS et al. The Curvature Induction of Surface-Bound Antimicrobial Peptides Piscidin 1 and Piscidin 3 Varies with Lipid Chain Length. 2015 J. Membr. Biol. pmid:25292264