18194-24-6

18194-24-6 is a lipid of Glycerophospholipids (GP) class. 18194-24-6 is associated with abnormalities such as Cerebrovascular accident, Renal tubular disorder, Atherosclerosis, Hyperlipoproteinemia Type III and Lipid Metabolism Disorders. The involved functions are known as Process, protein folding, Catalyst, Biochemical Pathway and Fold in Medical Device Material. 18194-24-6 often locates in Tissue membrane, Membrane, periplasm, vesicle membrane and outer membrane. The associated genes with 18194-24-6 are Integral Membrane Proteins, Protein Structure, RTN4 gene, RTN4R gene and Protein, Organized by Structure. The related lipids are Micelles, dimyristoylphosphatidylglycerol, 1,2-dihexadecyl-sn-glycero-3-phosphocholine, Unilamellar Vesicles and cholesteryl oleate. The related experimental models are Mouse Model, Arthritis, Adjuvant-Induced, Disease model and Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of 18194-24-6, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18194-24-6?

18194-24-6 is suspected in Atherosclerosis, Cardiovascular Diseases, Dehydration, Abnormal shape, Renal tubular disorder, Hyperlipoproteinemia Type III and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 18194-24-6

MeSH term MeSH ID Detail
Hyperlipoproteinemias D006951 15 associated lipids
Lung Neoplasms D008175 171 associated lipids
Mycoses D009181 18 associated lipids
Neuroblastoma D009447 66 associated lipids
Osteosarcoma D012516 50 associated lipids
Tangier Disease D013631 8 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
HIV Infections D015658 20 associated lipids
Lymphoma, Large B-Cell, Diffuse D016403 13 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Per page 10 20 50 | Total 22

PubChem Associated disorders and diseases

What pathways are associated with 18194-24-6

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18194-24-6?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 18194-24-6?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18194-24-6?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 18194-24-6?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 18194-24-6?

Mouse Model

Mouse Model are used in the study 'Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes.' (Mishra VK et al., 2006).

Arthritis, Adjuvant-Induced

Arthritis, Adjuvant-Induced are used in the study 'T cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance.' (Bender V et al., 2004).

Disease model

Disease model are used in the study 'Kupffer cells do not play a role in governing the efficacy of liposomal mitoxantrone used to treat a tumor model designed to assess drug delivery to liver.' (Lim HJ et al., 2000).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 18194-24-6

Download all related citations
Per page 10 20 50 100 | Total 3218
Authors Title Published Journal PubMed Link
Neumann A et al. Membrane Sterols Modulate the Binding Mode of Amphotericin B without Affecting Its Affinity for a Lipid Bilayer. 2016 Langmuir pmid:27007267
Palacios-Ortega J et al. Regulation of Sticholysin II-Induced Pore Formation by Lipid Bilayer Composition, Phase State, and Interfacial Properties. 2016 Langmuir pmid:27003246
Yang J et al. Free energy landscapes of sodium ions bound to DMPC-cholesterol membrane surfaces at infinite dilution. 2016 Phys Chem Chem Phys pmid:26967312
Grau-Campistany A et al. Extending the Hydrophobic Mismatch Concept to Amphiphilic Membranolytic Peptides. 2016 J Phys Chem Lett pmid:26963560
Sierra MB et al. The use of zeta potential as a tool to study phase transitions in binary phosphatidylcholines mixtures. 2016 Colloids Surf B Biointerfaces pmid:26954086
Nowak B et al. Solid-Supported Lipid Multilayers under High Hydrostatic Pressure. 2016 Langmuir pmid:26927365
Mei X et al. Probing the C-terminal domain of lipid-free apoA-I demonstrates the vital role of the H10B sequence repeat in HDL formation. 2016 J. Lipid Res. pmid:27317763
Park YH et al. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots. 2016 Electrophoresis pmid:26920999
Min D et al. A simple DNA handle attachment method for single molecule mechanical manipulation experiments. 2016 Protein Sci. pmid:27222403
Matyszewska D et al. PM-IRRAS Studies of DMPC Bilayers Supported on Au(111) Electrodes Modified with Hydrophilic Monolayers of Thioglucose. 2016 Langmuir pmid:26829620
Ma J et al. Stable Small Composite Microbubbles Decorated with Magnetite Nanoparticles - A Synergistic Effect between Surfactant Molecules and Nanoparticles. 2016 J Oleo Sci pmid:27087000
Lee CT et al. Simulation-Based Approaches for Determining Membrane Permeability of Small Compounds. 2016 J Chem Inf Model pmid:27043429
Keidel A et al. Direct observation of intermediate states in model membrane fusion. 2016 Sci Rep pmid:27029285
Khan HM et al. A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding. 2016 Biophys. J. pmid:27028646
Lockhart C and Klimov DK The Alzheimer's disease Aβ peptide binds to the anionic DMPS lipid bilayer. 2016 Biochim. Biophys. Acta pmid:26947182
Pluhackova K et al. A Critical Comparison of Biomembrane Force Fields: Structure and Dynamics of Model DMPC, POPC, and POPE Bilayers. 2016 J Phys Chem B pmid:27035634
Hirst DJ et al. The impact of cell-penetrating peptides on membrane bilayer structure during binding and insertion. 2016 Biochim. Biophys. Acta pmid:27163492
Bello OD et al. Using ApoE Nanolipoprotein Particles To Analyze SNARE-Induced Fusion Pores. 2016 Langmuir pmid:26972604
de Athayde Moncorvo Collado A et al. Cholesterol induces surface localization of polyphenols in model membranes thus enhancing vesicle stability against lysozyme, but reduces protection of distant double bonds from reactive-oxygen species. 2016 Biochim. Biophys. Acta pmid:27063609
Guimarães Sá Correia M et al. Microfluidic manufacturing of phospholipid nanoparticles: Stability, encapsulation efficacy, and drug release. 2017 Int J Pharm pmid:27840162
Li MJ et al. Differential Coupling of Binding, ATP Hydrolysis, and Transport of Fluorescent Probes with P-Glycoprotein in Lipid Nanodiscs. 2017 Biochemistry pmid:28441502
Saeedi M et al. Anesthetics mechanism on a DMPC lipid membrane model: Insights from molecular dynamics simulations. 2017 Biophys. Chem. pmid:28410497
Bessonov K et al. Docking and molecular dynamics simulations of the Fyn-SH3 domain with free and phospholipid bilayer-associated 18.5-kDa myelin basic protein (MBP)-Insights into a noncanonical and fuzzy interaction. 2017 Proteins pmid:28380689
Bocharov EV et al. The Conformation of the Epidermal Growth Factor Receptor Transmembrane Domain Dimer Dynamically Adapts to the Local Membrane Environment. 2017 Biochemistry pmid:28291355
Cangiotti M et al. Electron paramagnetic resonance and transmission electron microscopy study of the interactions between asbestiform zeolite fibers and model membranes. 2017 J. Toxicol. Environ. Health Part A pmid:28277034
Shenkarev ZO et al. Ligand Binding Properties of the Lentil Lipid Transfer Protein: Molecular Insight into the Possible Mechanism of Lipid Uptake. 2017 Biochemistry pmid:28266846
Hayden SC et al. Reversible Lifting of Surface Supported Lipid Bilayers with a Membrane-Spanning Nonionic Triblock Copolymer. 2017 Biomacromolecules pmid:28225603
Debouzy JC et al. NMR and ESR study of amphotericin B interactions with various binary phosphatidylcholine/phosphatidylglycerol membranes. 2017 Int J Pharm pmid:28216467
Zambrano P et al. In vitro effects of the anti-Alzheimer drug memantine on the human erythrocyte membrane and molecular models. 2017 Biochem. Biophys. Res. Commun. pmid:27998775
Penny WM et al. Phospholipid bilayer affinities and solvation characteristics by electrokinetic chromatography with a nanodisc pseudostationary phase. 2017 Electrophoresis pmid:27859480
Yadav MK et al. Phospholipid/Polydiacetylene Vesicle-Based Colorimetric Assay for High-Throughput Screening of Bacteriocins and Halocins. 2017 Appl. Biochem. Biotechnol. pmid:27844338
Pazin WM et al. Interaction of Artepillin C with model membranes. 2017 Eur. Biophys. J. pmid:27785542
Jalili S and Saeedi M Study of procaine and tetracaine in the lipid bilayer using molecular dynamics simulation. 2017 Eur. Biophys. J. pmid:27557558
Lek MT et al. Swapping the N- and C-terminal domains of human apolipoprotein E3 and AI reveals insights into their structure/activity relationship. 2017 PLoS ONE pmid:28644829
Janeczek AA et al. PEGylated liposomes associate with Wnt3A protein and expand putative stem cells in human bone marrow populations. 2017 Nanomedicine (Lond) pmid:28351228
Zhu L et al. Ultra-low friction between boundary layers of hyaluronan-phosphatidylcholine complexes. 2017 Acta Biomater pmid:28669720
Schrottke S et al. Expression, Functional Characterization, and Solid-State NMR Investigation of the G Protein-Coupled GHS Receptor in Bilayer Membranes. 2017 Sci Rep pmid:28387359
Isabettini S et al. Molecular engineering of lanthanide ion chelating phospholipids generating assemblies with a switched magnetic susceptibility. 2017 Phys Chem Chem Phys pmid:28745755
Santhosh PB et al. Phospholipid stabilized gold nanorods: towards improved colloidal stability and biocompatibility. 2017 Phys Chem Chem Phys pmid:28682382
Suwalsky M et al. An In Vitro Study of the Antioxidant and Antihemolytic Properties of Buddleja globosa (Matico). 2017 J. Membr. Biol. pmid:28386629
Parikh N and Klimov DK Inclusion of lipopeptides into the DMPC lipid bilayers prevents Aβ peptide insertion. 2017 Phys Chem Chem Phys pmid:28367578
Piai A et al. Optimal Bicelle Size q for Solution NMR Studies of the Protein Transmembrane Partition. 2017 Chemistry pmid:27747952
Lockhart C and Klimov DK Cholesterol Changes the Mechanisms of Aβ Peptide Binding to the DMPC Bilayer. 2017 J Chem Inf Model pmid:28910085
Lakomek NA et al. Proton-Detected NMR Spectroscopy of Nanodisc-Embedded Membrane Proteins: MAS Solid-State vs Solution-State Methods. 2017 J Phys Chem B pmid:28737919
Barrera EE et al. Modeling DMPC lipid membranes with SIRAH force-field. 2017 J Mol Model pmid:28799119
Chu X et al. Flow-Induced Shape Reconfiguration, Phase Separation, and Rupture of Bio-Inspired Vesicles. 2017 ACS Nano pmid:28582613
Yousefpour A et al. Combination of anti-hypertensive drugs: a molecular dynamics simulation study. 2017 J Mol Model pmid:28397088
Stevenson P and Tokmakoff A Ultrafast Fluctuations of High Amplitude Electric Fields in Lipid Membranes. 2017 J. Am. Chem. Soc. pmid:28277665
Schmidt ML and Davis JH Liquid Disordered-Liquid Ordered Phase Coexistence in Lipid/Cholesterol Mixtures: A Deuterium 2D NMR Exchange Study. 2017 Langmuir pmid:28165749
Sharma VK et al. Incorporation of aspirin modulates the dynamical and phase behavior of the phospholipid membrane. 2017 Phys Chem Chem Phys pmid:28058428