18194-24-6

18194-24-6 is a lipid of Glycerophospholipids (GP) class. 18194-24-6 is associated with abnormalities such as Cerebrovascular accident, Renal tubular disorder, Atherosclerosis, Hyperlipoproteinemia Type III and Lipid Metabolism Disorders. The involved functions are known as Process, protein folding, Catalyst, Biochemical Pathway and Fold in Medical Device Material. 18194-24-6 often locates in Tissue membrane, Membrane, periplasm, vesicle membrane and outer membrane. The associated genes with 18194-24-6 are Integral Membrane Proteins, Protein Structure, RTN4 gene, RTN4R gene and Protein, Organized by Structure. The related lipids are Micelles, dimyristoylphosphatidylglycerol, 1,2-dihexadecyl-sn-glycero-3-phosphocholine, Unilamellar Vesicles and cholesteryl oleate. The related experimental models are Mouse Model, Arthritis, Adjuvant-Induced, Disease model and Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of 18194-24-6, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18194-24-6?

18194-24-6 is suspected in Atherosclerosis, Cardiovascular Diseases, Dehydration, Abnormal shape, Renal tubular disorder, Hyperlipoproteinemia Type III and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 18194-24-6

MeSH term MeSH ID Detail
Neuroblastoma D009447 66 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Colorectal Neoplasms D015179 10 associated lipids
Anemia, Hemolytic, Congenital D000745 5 associated lipids
Hyperlipoproteinemias D006951 15 associated lipids
Tangier Disease D013631 8 associated lipids
HIV Infections D015658 20 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Mycoses D009181 18 associated lipids
Cholangiocarcinoma D018281 7 associated lipids
Per page 10 20 50 | Total 22

PubChem Associated disorders and diseases

What pathways are associated with 18194-24-6

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18194-24-6?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 18194-24-6?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18194-24-6?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 18194-24-6?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 18194-24-6?

Mouse Model

Mouse Model are used in the study 'Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes.' (Mishra VK et al., 2006).

Arthritis, Adjuvant-Induced

Arthritis, Adjuvant-Induced are used in the study 'T cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance.' (Bender V et al., 2004).

Disease model

Disease model are used in the study 'Kupffer cells do not play a role in governing the efficacy of liposomal mitoxantrone used to treat a tumor model designed to assess drug delivery to liver.' (Lim HJ et al., 2000).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 18194-24-6

Download all related citations
Per page 10 20 50 100 | Total 3218
Authors Title Published Journal PubMed Link
Bian J et al. Solid-phase extraction approach for phospholipids profiling by titania-coated silica microspheres prior to reversed-phase liquid chromatography-evaporative light scattering detection and tandem mass spectrometry analysis. 2014 Talanta pmid:24725887
Agopian A and Castano S Structure and orientation study of Ebola fusion peptide inserted in lipid membrane models. 2014 Biochim. Biophys. Acta pmid:24055820
Salcedo CL et al. Surface and hysteresis properties of lipid interphases composed by head group substituted phosphatidylethanolamines. 2014 Colloids Surf B Biointerfaces pmid:24099791
Correia RF et al. Aggregation/disaggregation of chlorophyll a in model phospholipid-detergent vesicles and micelles. 2014 Photochem. Photobiol. Sci. pmid:24715103
Xiong J et al. Role of bilayer characteristics on the structural fate of aβ(1-40) and aβ(25-40). 2014 Biochemistry pmid:24702518
Sommer LA and Dames SA Characterization of residue-dependent differences in the peripheral membrane association of the FATC domain of the kinase 'target of rapamycin' by NMR and CD spectroscopy. 2014 FEBS Lett. pmid:24704685
Marquardt D et al. Dimyristoyl phosphatidylcholine: a remarkable exception to α-tocopherol's membrane presence. 2014 J. Am. Chem. Soc. pmid:24308426
Manrique-Moreno M et al. Structural effects of the Solanum steroids solasodine, diosgenin and solanine on human erythrocytes and molecular models of eukaryotic membranes. 2014 Biochim. Biophys. Acta pmid:23954587
Muñoz F et al. Possible mechanism of structural transformations induced by StAsp-PSI in lipid membranes. 2014 Biochim. Biophys. Acta pmid:23954619
Ichihara H et al. Nanotherapy with hybrid liposomes for colorectal cancer along with apoptosis in vitro and in vivo. 2014 Anticancer Res. pmid:25202047
Rui H et al. Probing the U-shaped conformation of caveolin-1 in a bilayer. 2014 Biophys. J. pmid:24655512
Majumdar A et al. Modulation of non steroidal anti-inflammatory drug induced membrane fusion by copper coordination of these drugs: anchoring effect. 2014 J Phys Chem B pmid:25380501
Giuffrida MC et al. Lipophilic prodrug of paclitaxel: interaction with a dimyristoylphosphatidylcholine monolayer. 2014 Int J Pharm pmid:25234865
Ye W et al. Characterization of the morphology of fast-tumbling bicelles with varying composition. 2014 Langmuir pmid:24785902
Mirzoev A and Lyubartsev AP Systematic implicit solvent coarse graining of dimyristoylphosphatidylcholine lipids. 2014 J Comput Chem pmid:24777775
Berényi S et al. A mechanistic view of lipid membrane disrupting effect of PAMAM dendrimers. 2014 Colloids Surf B Biointerfaces pmid:24769393
Basu I et al. Ion channel stability of Gramicidin A in lipid bilayers: effect of hydrophobic mismatch. 2014 Biochim. Biophys. Acta pmid:24125683
Sarpietro MG et al. DSC investigation of the effect of the new sigma ligand PPCC on DMPC lipid membrane. 2014 Int J Pharm pmid:24768402
Hansen SK et al. Lipid dynamics studied by calculation of 31P solid-state NMR spectra using ensembles from molecular dynamics simulations. 2014 J Phys Chem B pmid:24738559
Armstrong CL et al. Nanosecond lipid dynamics in membranes containing cholesterol. 2014 Soft Matter pmid:24647350