18194-24-6

18194-24-6 is a lipid of Glycerophospholipids (GP) class. 18194-24-6 is associated with abnormalities such as Cerebrovascular accident, Renal tubular disorder, Atherosclerosis, Hyperlipoproteinemia Type III and Lipid Metabolism Disorders. The involved functions are known as Process, protein folding, Catalyst, Biochemical Pathway and Fold in Medical Device Material. 18194-24-6 often locates in Tissue membrane, Membrane, periplasm, vesicle membrane and outer membrane. The associated genes with 18194-24-6 are Integral Membrane Proteins, Protein Structure, RTN4 gene, RTN4R gene and Protein, Organized by Structure. The related lipids are Micelles, dimyristoylphosphatidylglycerol, 1,2-dihexadecyl-sn-glycero-3-phosphocholine, Unilamellar Vesicles and cholesteryl oleate. The related experimental models are Mouse Model, Arthritis, Adjuvant-Induced, Disease model and Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of 18194-24-6, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18194-24-6?

18194-24-6 is suspected in Atherosclerosis, Cardiovascular Diseases, Dehydration, Abnormal shape, Renal tubular disorder, Hyperlipoproteinemia Type III and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 18194-24-6

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Alzheimer Disease D000544 76 associated lipids
Anemia, Hemolytic, Congenital D000745 5 associated lipids
Arteriosclerosis D001161 86 associated lipids
Blastomycosis D001759 5 associated lipids
Body Weight D001835 333 associated lipids
Carcinoma D002277 18 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Hemolysis D006461 131 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Per page 10 20 50 | Total 22

PubChem Associated disorders and diseases

What pathways are associated with 18194-24-6

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18194-24-6?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 18194-24-6?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18194-24-6?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 18194-24-6?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 18194-24-6?

Mouse Model

Mouse Model are used in the study 'Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes.' (Mishra VK et al., 2006).

Arthritis, Adjuvant-Induced

Arthritis, Adjuvant-Induced are used in the study 'T cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance.' (Bender V et al., 2004).

Disease model

Disease model are used in the study 'Kupffer cells do not play a role in governing the efficacy of liposomal mitoxantrone used to treat a tumor model designed to assess drug delivery to liver.' (Lim HJ et al., 2000).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 18194-24-6

Download all related citations
Per page 10 20 50 100 | Total 3218
Authors Title Published Journal PubMed Link
Van Dael H and Ceuterickx P The interaction of phenol with lipid bilayers. 1984 Chem. Phys. Lipids pmid:6547882
Nakanishi M Rapid reconstitution of a transmembrane protein into supported planar lipid membranes. 1984 FEBS Lett. pmid:6548452
Riegler J et al. Two-dimensional electron transfer from cytochrome C to photosynthetic reaction centers. 1984 Biochem. Biophys. Res. Commun. pmid:6097243
Kinosita K et al. Dynamic structure of biological and model membranes: analysis by optical anisotropy decay measurement. 1984 Adv. Biophys. pmid:6399815
Gómez-Fernández JC et al. A fluorescence quenching study of tryptophanyl residues of (Ca2+ + Mg2+)-ATPase from sarcoplasmic reticulum. 1985 J. Biol. Chem. pmid:3158653
Myers M and Freire E Calorimetric and fluorescence characterization of interactions between enkephalins and liposomal and synaptic plasma membranes containing gangliosides. 1985 Biochemistry pmid:3840386
Wong PT and Mantsch HH Effects of hydrostatic pressure on the molecular structure and endothermic phase transitions of phosphatidylcholine bilayers: a Raman scattering study. 1985 Biochemistry pmid:3840387
Lentz BR et al. Calcium-dependent and calcium-independent interactions of prothrombin fragment 1 with phosphatidylglycerol/phosphatidylcholine unilamellar vesicles. 1985 Biochemistry pmid:3841009
Bevan DR and Yonda NT Elution of polycyclic aromatic hydrocarbons from carbon blacks into biomembranes in vitro. 1985 Toxicol Ind Health pmid:3842546
Saez R et al. The effect of bilayer order and fluidity on detergent-induced liposome fusion. 1985 FEBS Lett. pmid:2578413
Sparrow JT et al. Apolipoprotein E: phospholipid binding studies with synthetic peptides containing the putative receptor binding region. 1985 Biochemistry pmid:3000443
Steinmetz A and Utermann G Activation of lecithin: cholesterol acyltransferase by human apolipoprotein A-IV. 1985 J. Biol. Chem. pmid:3918999
Akhrem AA et al. [Anomalous thermotropic behavior of proteoliposomes consisting of cytochrome P-450, dimyristoylphosphatidylcholine and dimyristoylphosphatidylglycerol]. 1985 Dokl. Akad. Nauk SSSR pmid:4064898
Hwang J and Menon KM Binding of apolipoprotein A-I and A-II after recombination with phospholipid vesicles to the high density lipoprotein receptor of luteinized rat ovary. 1985 J. Biol. Chem. pmid:2985608
Knoll W et al. Small-angle neutron scattering study of lateral phase separation in dimyristoylphosphatidylcholine-cholesterol mixed membranes. 1985 Biochemistry pmid:4074692
Pal R et al. Characterization of the fluorophore 4-heptadecyl-7-hydroxycoumarin: a probe for the head-group region of lipid bilayers and biological membranes. 1985 Biochemistry pmid:2986680
Strenk LM et al. A model of orientational ordering in phosphatidylcholine bilayers based on conformational analysis of the glycerol backbone region. 1985 Biophys. J. pmid:4074836
Powell GL et al. Association of spin-labelled cardiolipin with dimyristoylphosphatidylcholine-substituted bovine heart cytochrome c oxidase. A generalized specificity increase rather than highly specific binding sites. 1985 Biochim. Biophys. Acta pmid:2988613
Bevan DR and Yonda NT In vitro technique to study elution of benzo[a]pyrene from particulates into biomembranes with application to woodstove particulates. 1985 Anal. Biochem. pmid:4083471
Inoue J et al. The activity of membranes reconstituted from HVJ envelope proteins and lipids to induce hemolysis and fusion between liposomes and erythrocytes. 1985 Biochim. Biophys. Acta pmid:2988617