18194-24-6

18194-24-6 is a lipid of Glycerophospholipids (GP) class. 18194-24-6 is associated with abnormalities such as Cerebrovascular accident, Renal tubular disorder, Atherosclerosis, Hyperlipoproteinemia Type III and Lipid Metabolism Disorders. The involved functions are known as Process, protein folding, Catalyst, Biochemical Pathway and Fold in Medical Device Material. 18194-24-6 often locates in Tissue membrane, Membrane, periplasm, vesicle membrane and outer membrane. The associated genes with 18194-24-6 are Integral Membrane Proteins, Protein Structure, RTN4 gene, RTN4R gene and Protein, Organized by Structure. The related lipids are Micelles, dimyristoylphosphatidylglycerol, 1,2-dihexadecyl-sn-glycero-3-phosphocholine, Unilamellar Vesicles and cholesteryl oleate. The related experimental models are Mouse Model, Arthritis, Adjuvant-Induced, Disease model and Xenograft Model.

Cross Reference

Introduction

To understand associated biological information of 18194-24-6, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 18194-24-6?

18194-24-6 is suspected in Atherosclerosis, Cardiovascular Diseases, Dehydration, Abnormal shape, Renal tubular disorder, Hyperlipoproteinemia Type III and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 18194-24-6

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Adenocarcinoma D000230 166 associated lipids
Lung Neoplasms D008175 171 associated lipids
Body Weight D001835 333 associated lipids
Carcinoma D002277 18 associated lipids
Osteosarcoma D012516 50 associated lipids
Lymphoma, Large B-Cell, Diffuse D016403 13 associated lipids
Chemical and Drug Induced Liver Injury D056486 39 associated lipids
Alzheimer Disease D000544 76 associated lipids
Arteriosclerosis D001161 86 associated lipids
Per page 10 20 50 | Total 22

PubChem Associated disorders and diseases

What pathways are associated with 18194-24-6

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 18194-24-6?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 18194-24-6?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 18194-24-6?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 18194-24-6?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 18194-24-6?

Mouse Model

Mouse Model are used in the study 'Association of a model class A (apolipoprotein) amphipathic alpha helical peptide with lipid: high resolution NMR studies of peptide.lipid discoidal complexes.' (Mishra VK et al., 2006).

Arthritis, Adjuvant-Induced

Arthritis, Adjuvant-Induced are used in the study 'T cell antigen receptor peptide-lipid membrane interactions using surface plasmon resonance.' (Bender V et al., 2004).

Disease model

Disease model are used in the study 'Kupffer cells do not play a role in governing the efficacy of liposomal mitoxantrone used to treat a tumor model designed to assess drug delivery to liver.' (Lim HJ et al., 2000).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with 18194-24-6

Download all related citations
Per page 10 20 50 100 | Total 3218
Authors Title Published Journal PubMed Link
Moniz T et al. NMR study of the interaction of fluorescent 3-hydroxy-4-pyridinone chelators with DMPC liposomes. 2016 Phys Chem Chem Phys pmid:26812137
Rifici S et al. Influence of Alcohols on the Lateral Diffusion in Phospholipid Membranes. 2016 J Phys Chem B pmid:26807655
Petaccia M et al. Kinetics and mechanistic study of competitive inhibition of thymidine phosphorylase by 5-fluoruracil derivatives. 2016 Colloids Surf B Biointerfaces pmid:26752208
Adhikari C and Chakraborty A Smart Approach for In Situ One-Step Encapsulation and Controlled Delivery of a Chemotherapeutic Drug using Metal-Organic Framework-Drug Composites in Aqueous Media. 2016 Chemphyschem pmid:26752093
Mura M et al. The effect of amidation on the behaviour of antimicrobial peptides. 2016 Eur. Biophys. J. pmid:26745958
Runas KA et al. Addition of Cleaved Tail Fragments during Lipid Oxidation Stabilizes Membrane Permeability Behavior. 2016 Langmuir pmid:26704691
Matsumoto Y et al. Therapeutic effects of trehalose liposomes against lymphoblastic leukemia leading to apoptosis in vitro and in vivo. 2016 Bioorg. Med. Chem. Lett. pmid:26711146
Homeyer N et al. Interpreting Thermodynamic Profiles of Aminoadamantane Compounds Inhibiting the M2 Proton Channel of Influenza A by Free Energy Calculations. 2016 J Chem Inf Model pmid:26690735
Wacklin HP et al. Neutron reflection study of the interaction of the eukaryotic pore-forming actinoporin equinatoxin II with lipid membranes reveals intermediate states in pore formation. 2016 Biochim. Biophys. Acta pmid:26706098
Sharma VK et al. Effect of α-Tocopherol on the Microscopic Dynamics of Dimyristoylphosphatidylcholine Membrane. 2016 J Phys Chem B pmid:26673405
Schmidt ML and Davis JH Liquid disordered-liquid ordered phase coexistence in bicelles containing unsaturated lipids and cholesterol. 2016 Biochim. Biophys. Acta pmid:26706097
Nagle JF et al. Determination of mosaicity in oriented stacks of lipid bilayers. 2016 Soft Matter pmid:26677063
Suzuki M et al. Targeting ceramide synthase 6-dependent metastasis-prone phenotype in lung cancer cells. 2016 J. Clin. Invest. pmid:26650179
Toscano-Flores LG et al. Experimental Determination of High-Order Bending Elastic Constants of Lipid Bilayers. 2016 J Phys Chem B pmid:27267752
Maccarini M et al. Nanostructural determination of a lipid bilayer tethered to a gold substrate. 2016 Eur Phys J E Soft Matter pmid:27966072
Serra-Batiste M et al. Aβ42 assembles into specific β-barrel pore-forming oligomers in membrane-mimicking environments. 2016 Proc. Natl. Acad. Sci. U.S.A. pmid:27621459
Yu T et al. Transport and Organization of Cholesterol in a Planar Solid-Supported Lipid Bilayer Depend on the Phospholipid Flip-Flop Rate. 2016 Langmuir pmid:27756133
Salnikov ES et al. Membrane topologies of the PGLa antimicrobial peptide and a transmembrane anchor sequence by Dynamic Nuclear Polarization/solid-state NMR spectroscopy. 2016 Sci Rep pmid:26876950
Capponi S et al. Interleaflet mixing and coupling in liquid-disordered phospholipid bilayers. 2016 Biochim. Biophys. Acta pmid:26657692
Jeong DW et al. Enhanced stability of freestanding lipid bilayer and its stability criteria. 2016 Sci Rep pmid:27982049