PE(15:0/20:0)

PE(15:0/20:0) is a lipid of Glycerophospholipids (GP) class. Pe(15:0/20:0) is associated with abnormalities such as Exanthema, Infection, Painful Bladder Syndrome, Obesity and Fatty Liver. The involved functions are known as conjugation, Transcription, Genetic, Sinking, Autophagy and Protein Biosynthesis. Pe(15:0/20:0) often locates in membrane fraction, soluble, Membrane, Body tissue and Tissue membrane. The associated genes with PE(15:0/20:0) are GABARAPL2 gene, ATG10 gene, ATG12 gene, SLC33A1 gene and GABARAP gene. The related lipids are Liposomes, Lipopolysaccharides, Phosphatidylserines, Membrane Lipids and Cardiolipins. The related experimental models are Knock-out and Cancer Model.

Cross Reference

Introduction

To understand associated biological information of PE(15:0/20:0), we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with PE(15:0/20:0)?

PE(15:0/20:0) is suspected in Infection, CONE-ROD DYSTROPHY 1 (disorder), Diabetes, Obesity, Malaria, Atherosclerosis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with PE(15:0/20:0)

MeSH term MeSH ID Detail
Abortion, Spontaneous D000022 12 associated lipids
Abortion, Habitual D000026 5 associated lipids
Adenocarcinoma D000230 166 associated lipids
Alzheimer Disease D000544 76 associated lipids
Cardiomyopathy, Dilated D002311 15 associated lipids
Cataract D002386 34 associated lipids
Cholestasis, Intrahepatic D002780 4 associated lipids
Choline Deficiency D002796 16 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Epilepsy D004827 35 associated lipids
Fatty Liver D005234 48 associated lipids
Fatty Liver, Alcoholic D005235 11 associated lipids
Galactosemias D005693 5 associated lipids
Hamartoma Syndrome, Multiple D006223 1 associated lipids
Hemolysis D006461 131 associated lipids
Lipid Metabolism, Inborn Errors D008052 26 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with PE(15:0/20:0)

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with PE(15:0/20:0)?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with PE(15:0/20:0)?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with PE(15:0/20:0)?

Knock-out

Knock-out are used in the study 'Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo.' (Hörl G et al., 2011) and Knock-out are used in the study 'An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure.' (Fujita N et al., 2008).

Cancer Model

Cancer Model are used in the study 'Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin.' (Tang N et al., 2007).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with PE(15:0/20:0)

Download all related citations
Per page 10 20 50 100 | Total 1374
Authors Title Published Journal PubMed Link
Nair U et al. A role for Atg8-PE deconjugation in autophagosome biogenesis. 2012 Autophagy pmid:22622160
Alirezaei M et al. Coxsackievirus can exploit LC3 in both autophagy-dependent and -independent manners in vivo. 2015 Autophagy pmid:26090585
Kuma A et al. LC3, an autophagosome marker, can be incorporated into protein aggregates independent of autophagy: caution in the interpretation of LC3 localization. 2007 Jul-Aug Autophagy pmid:17387262
Mizushima N and Yoshimori T How to interpret LC3 immunoblotting. 2007 Nov-Dec Autophagy pmid:17611390
Yu ZQ et al. Dual roles of Atg8-PE deconjugation by Atg4 in autophagy. 2012 Autophagy pmid:22652539
Mitroi DN et al. SGPL1 (sphingosine phosphate lyase 1) modulates neuronal autophagy via phosphatidylethanolamine production. 2017 Autophagy pmid:28521611
Nivon M et al. Autophagy activation by NFkappaB is essential for cell survival after heat shock. 2009 Autophagy pmid:19502777
Shao Y et al. Stimulation of ATG12-ATG5 conjugation by ribonucleic acid. 2007 Jan-Feb Autophagy pmid:16963840
Nakatogawa H et al. Lipidation of Atg8: how is substrate specificity determined without a canonical E3 enzyme? 2008 Autophagy pmid:18690009
Park JM et al. The ULK1 complex mediates MTORC1 signaling to the autophagy initiation machinery via binding and phosphorylating ATG14. 2016 Autophagy pmid:27046250