PE(15:0/20:0)

PE(15:0/20:0) is a lipid of Glycerophospholipids (GP) class. Pe(15:0/20:0) is associated with abnormalities such as Exanthema, Infection, Painful Bladder Syndrome, Obesity and Fatty Liver. The involved functions are known as conjugation, Transcription, Genetic, Sinking, Autophagy and Protein Biosynthesis. Pe(15:0/20:0) often locates in membrane fraction, soluble, Membrane, Body tissue and Tissue membrane. The associated genes with PE(15:0/20:0) are GABARAPL2 gene, ATG10 gene, ATG12 gene, SLC33A1 gene and GABARAP gene. The related lipids are Liposomes, Lipopolysaccharides, Phosphatidylserines, Membrane Lipids and Cardiolipins. The related experimental models are Knock-out and Cancer Model.

Cross Reference

Introduction

To understand associated biological information of PE(15:0/20:0), we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with PE(15:0/20:0)?

PE(15:0/20:0) is suspected in Infection, CONE-ROD DYSTROPHY 1 (disorder), Diabetes, Obesity, Malaria, Atherosclerosis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with PE(15:0/20:0)

MeSH term MeSH ID Detail
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Epilepsy D004827 35 associated lipids
Fatty Liver D005234 48 associated lipids
Fatty Liver, Alcoholic D005235 11 associated lipids
Galactosemias D005693 5 associated lipids
Hamartoma Syndrome, Multiple D006223 1 associated lipids
Hemolysis D006461 131 associated lipids
Lipid Metabolism, Inborn Errors D008052 26 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with PE(15:0/20:0)

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with PE(15:0/20:0)?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with PE(15:0/20:0)?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with PE(15:0/20:0)?

Knock-out

Knock-out are used in the study 'Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo.' (Hörl G et al., 2011) and Knock-out are used in the study 'An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure.' (Fujita N et al., 2008).

Cancer Model

Cancer Model are used in the study 'Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin.' (Tang N et al., 2007).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with PE(15:0/20:0)

Download all related citations
Per page 10 20 50 100 | Total 1374
Authors Title Published Journal PubMed Link
Xu Z et al. Synthesis and characterization of oligomaltose-grafted lipids with application to liposomes. 2002 J Colloid Interface Sci pmid:16290762
Pacetti D et al. High performance liquid chromatography-tandem mass spectrometry of phospholipid molecular species in eggs from hens fed diets enriched in seal blubber oil. 2005 J Chromatogr A pmid:16298186
Hamai C et al. Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion. 2006 Biophys. J. pmid:16299084
Sou YS et al. Phosphatidylserine in addition to phosphatidylethanolamine is an in vitro target of the mammalian Atg8 modifiers, LC3, GABARAP, and GATE-16. 2006 J. Biol. Chem. pmid:16303767
Manucha W et al. Effect of losartan pretreatment on kidney lipid content after unilateral obstruction in rats. 2005 Cell. Mol. Biol. (Noisy-le-grand) pmid:16309578
Wichmann O et al. A small-molecule FRET probe to monitor phospholipase A2 activity in cells and organisms. 2006 Angew. Chem. Int. Ed. Engl. pmid:16323228
Hocquellet A et al. Evidence for a different metabolism of PC and PE in shoots and roots. 2005 Oct-Nov Plant Physiol. Biochem. pmid:16325411
Boumann HA et al. Depletion of phosphatidylcholine in yeast induces shortening and increased saturation of the lipid acyl chains: evidence for regulation of intrinsic membrane curvature in a eukaryote. 2006 Mol. Biol. Cell pmid:16339082
Kim A et al. Modulation of the specific interaction of cardiolipin with Cytochrome c by Zwitterionic phospholipids in binary mixed bilayers: a 2H and 31P-NMR study. 2005 J. Biochem. Mol. Biol. pmid:16353315
Kaliszewski P et al. Enhanced levels of Pis1p (phosphatidylinositol synthase) improve the growth of Saccharomyces cerevisiae cells deficient in Rsp5 ubiquitin ligase. 2006 Biochem. J. pmid:16363994
Sharpley MS et al. Interactions between phospholipids and NADH:ubiquinone oxidoreductase (complex I) from bovine mitochondria. 2006 Biochemistry pmid:16388600
Zhirnov AE et al. Lipid composition determines interaction of liposome membranes with Pluronic L61. 2005 Biochim. Biophys. Acta pmid:16405999
Bourre JM et al. Fatty acid alterations in liver peroxisomes from n-3-deficient mice. 2006 Ann. Nutr. Metab. pmid:16407648
Wachtel E et al. A product of ozonolysis of cholesterol alters the biophysical properties of phosphatidylethanolamine membranes. 2006 Biochemistry pmid:16430232
Blois A et al. Interactions of chromogranin A-derived vasostatins and monolayers of phosphatidylserine, phosphatidylcholine and phosphatidylethanolamine. 2006 Regul. Pept. pmid:16445995
Alder-Baerens N et al. Loss of P4 ATPases Drs2p and Dnf3p disrupts aminophospholipid transport and asymmetry in yeast post-Golgi secretory vesicles. 2006 Mol. Biol. Cell pmid:16452632
Min Y et al. A distinctive fatty acid profile in circulating lipids of Korean gestational diabetics: a pilot study. 2006 Diabetes Res. Clin. Pract. pmid:16455150
Petelska AD et al. The interfacial tension of the lipid membrane formed from lipid-cholesterol and lipid-lipid systems. 2006 Cell Biochem. Biophys. pmid:16456222
Clark MC et al. NMR assignment of rat Raf kinase inhibitor protein. 2006 J. Biomol. NMR pmid:16456706
Singh AT et al. Parathyroid hormone stimulates phosphatidylethanolamine hydrolysis by phospholipase D in osteoblastic cells. 2005 Lipids pmid:16459925