PE(15:0/20:0)

PE(15:0/20:0) is a lipid of Glycerophospholipids (GP) class. Pe(15:0/20:0) is associated with abnormalities such as Exanthema, Infection, Painful Bladder Syndrome, Obesity and Fatty Liver. The involved functions are known as conjugation, Transcription, Genetic, Sinking, Autophagy and Protein Biosynthesis. Pe(15:0/20:0) often locates in membrane fraction, soluble, Membrane, Body tissue and Tissue membrane. The associated genes with PE(15:0/20:0) are GABARAPL2 gene, ATG10 gene, ATG12 gene, SLC33A1 gene and GABARAP gene. The related lipids are Liposomes, Lipopolysaccharides, Phosphatidylserines, Membrane Lipids and Cardiolipins. The related experimental models are Knock-out and Cancer Model.

Cross Reference

Introduction

To understand associated biological information of PE(15:0/20:0), we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with PE(15:0/20:0)?

PE(15:0/20:0) is suspected in Infection, CONE-ROD DYSTROPHY 1 (disorder), Diabetes, Obesity, Malaria, Atherosclerosis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with PE(15:0/20:0)

MeSH term MeSH ID Detail
Venous Thromboembolism D054556 2 associated lipids
Barth Syndrome D056889 3 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with PE(15:0/20:0)

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with PE(15:0/20:0)?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with PE(15:0/20:0)?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with PE(15:0/20:0)?

Knock-out

Knock-out are used in the study 'Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo.' (Hörl G et al., 2011) and Knock-out are used in the study 'An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure.' (Fujita N et al., 2008).

Cancer Model

Cancer Model are used in the study 'Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin.' (Tang N et al., 2007).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with PE(15:0/20:0)

Download all related citations
Per page 10 20 50 100 | Total 1374
Authors Title Published Journal PubMed Link
Barker AP et al. A novel extracellular phospholipase C of Pseudomonas aeruginosa is required for phospholipid chemotaxis. 2004 Mol. Microbiol. pmid:15306013
Meuillet EJ et al. Thioredoxin-1 binds to the C2 domain of PTEN inhibiting PTEN's lipid phosphatase activity and membrane binding: a mechanism for the functional loss of PTEN's tumor suppressor activity. 2004 Arch. Biochem. Biophys. pmid:15313215
Moe MK et al. Vicinal hydroxylation of unsaturated fatty acids for structural characterization of intact neutral phospholipids by negative electrospray ionization tandem quadrupole mass spectrometry. 2004 Rapid Commun. Mass Spectrom. pmid:15317043
Sugai R et al. Overexpression of gnsA, a multicopy suppressor of the secG null mutation, increases acidic phospholipid contents by inhibiting phosphatidylethanolamine synthesis at low temperatures. 2004 J. Bacteriol. pmid:15317805
Khopade AJ et al. Phase structures of a hydrated anionic phospholipid composition containing cationic dendrimers and pegylated lipids. 2004 Langmuir pmid:15323476
Odabaei G et al. Raf-1 kinase inhibitor protein: structure, function, regulation of cell signaling, and pivotal role in apoptosis. 2004 Adv. Cancer Res. pmid:15327891
Zhang N et al. [The enhancing effect of tomato lectin modified liposomes of insulin on oral absorption in mice]. 2004 Yao Xue Xue Bao pmid:15338884
Kihara A and Igarashi Y Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. 2004 Mol. Biol. Cell pmid:15342785
Polozov IV and Gawrisch K Domains in binary SOPC/POPE lipid mixtures studied by pulsed field gradient 1H MAS NMR. 2004 Biophys. J. pmid:15345553
Shaikh SR et al. Oleic and docosahexaenoic acid differentially phase separate from lipid raft molecules: a comparative NMR, DSC, AFM, and detergent extraction study. 2004 Biophys. J. pmid:15345554
Iwamoto K et al. [Relationship between localized phosphatidylethanolamine exposure and yeast cell polarity]. 2004 Tanpakushitsu Kakusan Koso pmid:15346886
Mead FC and Williams AJ Electrostatic mechanisms underlie neomycin block of the cardiac ryanodine receptor channel (RyR2). 2004 Biophys. J. pmid:15361409
Berson EL et al. Further evaluation of docosahexaenoic acid in patients with retinitis pigmentosa receiving vitamin A treatment: subgroup analyses. 2004 Arch. Ophthalmol. pmid:15364709
Schleheck D et al. Parvibaculum lavamentivorans gen. nov., sp. nov., a novel heterotroph that initiates catabolism of linear alkylbenzenesulfonate. 2004 Int. J. Syst. Evol. Microbiol. pmid:15388700
STEINBERG BL Intravenous procaine; its effect on liver function in man as determined by the cephalin flocculation test. 1949 Anesthesiology pmid:15393676
CHRISTHILF SM et al. Liver function during pregnancy and the puerperium, as measured by the cephalin-cholesterol flocculation, the thymol turbidity, and the bromsulfalein tests. 1950 Am. J. Obstet. Gynecol. pmid:15410828
NEEFE JR et al. Comparison of the thymol, cephalin-cholesterol flocculation and colloidal red tests in acute viral hepatitis. 1950 Am. J. Med. pmid:15413625
Liu F et al. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylethanolamine Bilayers. 2004 Biophys. J. pmid:15454444
Lairion F and Disalvo EA Effect of phloretin on the dipole potential of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol monolayers. 2004 Langmuir pmid:15461500
Iwamoto K et al. Local exposure of phosphatidylethanolamine on the yeast plasma membrane is implicated in cell polarity. 2004 Genes Cells pmid:15461661