PE(15:0/20:0)

PE(15:0/20:0) is a lipid of Glycerophospholipids (GP) class. Pe(15:0/20:0) is associated with abnormalities such as Exanthema, Infection, Painful Bladder Syndrome, Obesity and Fatty Liver. The involved functions are known as conjugation, Transcription, Genetic, Sinking, Autophagy and Protein Biosynthesis. Pe(15:0/20:0) often locates in membrane fraction, soluble, Membrane, Body tissue and Tissue membrane. The associated genes with PE(15:0/20:0) are GABARAPL2 gene, ATG10 gene, ATG12 gene, SLC33A1 gene and GABARAP gene. The related lipids are Liposomes, Lipopolysaccharides, Phosphatidylserines, Membrane Lipids and Cardiolipins. The related experimental models are Knock-out and Cancer Model.

Cross Reference

Introduction

To understand associated biological information of PE(15:0/20:0), we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with PE(15:0/20:0)?

PE(15:0/20:0) is suspected in Infection, CONE-ROD DYSTROPHY 1 (disorder), Diabetes, Obesity, Malaria, Atherosclerosis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with PE(15:0/20:0)

MeSH term MeSH ID Detail
Activated Protein C Resistance D020016 1 associated lipids
Hamartoma Syndrome, Multiple D006223 1 associated lipids
Sneddon Syndrome D018860 1 associated lipids
Venous Thromboembolism D054556 2 associated lipids
Barth Syndrome D056889 3 associated lipids
Cholestasis, Intrahepatic D002780 4 associated lipids
Chondrodysplasia Punctata, Rhizomelic D018902 4 associated lipids
Abortion, Habitual D000026 5 associated lipids
Trypanosomiasis D014352 5 associated lipids
Galactosemias D005693 5 associated lipids
Hyperhomocysteinemia D020138 6 associated lipids
Trematode Infections D014201 8 associated lipids
Tangier Disease D013631 8 associated lipids
Toxoplasmosis D014123 9 associated lipids
Bacteremia D016470 9 associated lipids
Fatty Liver, Alcoholic D005235 11 associated lipids
Thinness D013851 11 associated lipids
Myocardial Ischemia D017202 11 associated lipids
Iron Overload D019190 11 associated lipids
Venous Thrombosis D020246 11 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with PE(15:0/20:0)

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with PE(15:0/20:0)?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with PE(15:0/20:0)?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with PE(15:0/20:0)?

Knock-out

Knock-out are used in the study 'Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo.' (Hörl G et al., 2011) and Knock-out are used in the study 'An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure.' (Fujita N et al., 2008).

Cancer Model

Cancer Model are used in the study 'Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin.' (Tang N et al., 2007).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with PE(15:0/20:0)

Download all related citations
Per page 10 20 50 100 | Total 1374
Authors Title Published Journal PubMed Link
Kol MA et al. Uptake and remodeling of exogenous phosphatidylethanolamine in E. coli. 2004 Biochim. Biophys. Acta pmid:15164768
Brown AJ Of cholesterol-free mice and men. 2004 Curr. Opin. Lipidol. pmid:15166797
Mead FC and Williams AJ Electrostatic mechanisms underlie neomycin block of the cardiac ryanodine receptor channel (RyR2). 2004 Biophys. J. pmid:15361409
Sprott GD et al. Liposome adjuvants prepared from the total polar lipids of Haloferax volcanii, Planococcus spp. and Bacillus firmus differ in ability to elicit and sustain immune responses. 2004 Vaccine pmid:15149772
Yang YW et al. The apoptotic and necrotic effects of tomatine adjuvant. 2004 Vaccine pmid:15149791
Lukyanov AN and Torchilin VP Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs. 2004 Adv. Drug Deliv. Rev. pmid:15109769
Fattal E et al. "Smart" delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. 2004 Adv. Drug Deliv. Rev. pmid:15066753
Simões S et al. On the formulation of pH-sensitive liposomes with long circulation times. 2004 Adv. Drug Deliv. Rev. pmid:15066754
Pessi G et al. A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. 2004 Proc. Natl. Acad. Sci. U.S.A. pmid:15073329
Wang Y et al. Regulation of signal peptidase by phospholipids in membrane: characterization of phospholipid bilayer incorporated Escherichia coli signal peptidase. 2004 Biochemistry pmid:14705954
Bleijerveld OB et al. Control of the CDPethanolamine pathway in mammalian cells: effect of CTP:phosphoethanolamine cytidylyltransferase overexpression and the amount of intracellular diacylglycerol. 2004 Biochem. J. pmid:14759225
Otto GP et al. Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. 2004 J. Biol. Chem. pmid:14736886
Zhang N et al. [Enhancing effect of Ulex europaeus agglutinin I modified liposomes on oral insulin absorption in mice]. 2004 Yao Xue Xue Bao pmid:15813031
Fanani ML et al. Lipid modulation of the activity of diacylglycerol kinase alpha- and zeta-isoforms: activation by phosphatidylethanolamine and cholesterol. 2004 Biochemistry pmid:15544347
Kobayashi S et al. Membrane translocation mechanism of the antimicrobial peptide buforin 2. 2004 Biochemistry pmid:15581374
Ho SY et al. Lipid metabolism in zebrafish. 2004 Methods Cell Biol. pmid:15602873
Lairion F and Disalvo EA Effect of phloretin on the dipole potential of phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol monolayers. 2004 Langmuir pmid:15461500
Iwamoto K et al. Local exposure of phosphatidylethanolamine on the yeast plasma membrane is implicated in cell polarity. 2004 Genes Cells pmid:15461661
Sostarecz AG et al. Phosphatidylethanolamine-induced cholesterol domains chemically identified with mass spectrometric imaging. 2004 J. Am. Chem. Soc. pmid:15506723
Kihara A and Igarashi Y Cross talk between sphingolipids and glycerophospholipids in the establishment of plasma membrane asymmetry. 2004 Mol. Biol. Cell pmid:15342785