PE(15:0/20:0)

PE(15:0/20:0) is a lipid of Glycerophospholipids (GP) class. Pe(15:0/20:0) is associated with abnormalities such as Exanthema, Infection, Painful Bladder Syndrome, Obesity and Fatty Liver. The involved functions are known as conjugation, Transcription, Genetic, Sinking, Autophagy and Protein Biosynthesis. Pe(15:0/20:0) often locates in membrane fraction, soluble, Membrane, Body tissue and Tissue membrane. The associated genes with PE(15:0/20:0) are GABARAPL2 gene, ATG10 gene, ATG12 gene, SLC33A1 gene and GABARAP gene. The related lipids are Liposomes, Lipopolysaccharides, Phosphatidylserines, Membrane Lipids and Cardiolipins. The related experimental models are Knock-out and Cancer Model.

Cross Reference

Introduction

To understand associated biological information of PE(15:0/20:0), we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with PE(15:0/20:0)?

PE(15:0/20:0) is suspected in Infection, CONE-ROD DYSTROPHY 1 (disorder), Diabetes, Obesity, Malaria, Atherosclerosis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with PE(15:0/20:0)

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with PE(15:0/20:0)

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with PE(15:0/20:0)?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with PE(15:0/20:0)?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with PE(15:0/20:0)?

Knock-out

Knock-out are used in the study 'Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo.' (Hörl G et al., 2011) and Knock-out are used in the study 'An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure.' (Fujita N et al., 2008).

Cancer Model

Cancer Model are used in the study 'Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin.' (Tang N et al., 2007).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with PE(15:0/20:0)

Download all related citations
Per page 10 20 50 100 | Total 1374
Authors Title Published Journal PubMed Link
Bernoud-Hubac N et al. Covalent binding of isoketals to ethanolamine phospholipids. 2004 Free Radic. Biol. Med. pmid:15477011
Alves ID et al. Phosphatidylethanolamine enhances rhodopsin photoactivation and transducin binding in a solid supported lipid bilayer as determined using plasmon-waveguide resonance spectroscopy. 2005 Biophys. J. pmid:15501933
Sostarecz AG et al. Phosphatidylethanolamine-induced cholesterol domains chemically identified with mass spectrometric imaging. 2004 J. Am. Chem. Soc. pmid:15506723
Elmes M et al. The effect of dietary supplementation with linoleic acid to late gestation ewes on the fatty acid composition of maternal and fetal plasma and tissues and the synthetic capacity of the placenta for 2-series prostaglandins. 2004 Biochim. Biophys. Acta pmid:15522830
Fanani ML et al. Lipid modulation of the activity of diacylglycerol kinase alpha- and zeta-isoforms: activation by phosphatidylethanolamine and cholesterol. 2004 Biochemistry pmid:15544347
Riché EL et al. Novel long-circulating liposomes containing peptide library-lipid conjugates: synthesis and in vivo behavior. 2004 J Drug Target pmid:15545085
Murzyn K et al. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. 2005 Biophys. J. pmid:15556990
Kobayashi S et al. Membrane translocation mechanism of the antimicrobial peptide buforin 2. 2004 Biochemistry pmid:15581374
Zhai X et al. Small angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) studies of amide phospholipids. 2005 Chem. Phys. Lipids pmid:15589228
Ho SY et al. Lipid metabolism in zebrafish. 2004 Methods Cell Biol. pmid:15602873
Jernigan Jr HM et al. Effects of cataractogenesis on the CDP-choline pathway: increased phospholipid synthesis in lenses from galactosemic rats and 13/N guinea pigs. 2005 Jan-Feb Ophthalmic Res. pmid:15604593
Edwards IJ et al. Differential effects of delivery of omega-3 fatty acids to human cancer cells by low-density lipoproteins versus albumin. 2004 Clin. Cancer Res. pmid:15623603
Nguyen LT et al. Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. 2005 J. Pept. Sci. pmid:15635665
Kamimori H et al. Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. 2005 Anal. Biochem. pmid:15649388
Sabah J et al. Role of albumin as a fatty acid carrier for biosynthesis of lens lipids. 2005 Exp. Eye Res. pmid:15652523
Sato Y et al. Transformation of Escherichia coli mediated by natural phospholipids. 2005 Biosci. Biotechnol. Biochem. pmid:15665495
Wang C et al. Characterization of phosphatidylethanolamine molecular species in human blood by on-line high performance liquid chromatography/quadrupole-linear ion trap mass spectrometry. 2004 Se Pu pmid:15709398
Musiol HJ et al. Toward semisynthetic lipoproteins by convergent strategies based on click and ligation chemistry. 2005 Chembiochem pmid:15723440
Nishibori A et al. Phosphatidylethanolamine domains and localization of phospholipid synthases in Bacillus subtilis membranes. 2005 J. Bacteriol. pmid:15743965
Goss R et al. Role of hexagonal structure-forming lipids in diadinoxanthin and violaxanthin solubilization and de-epoxidation. 2005 Biochemistry pmid:15751979