PE(15:0/20:0)

PE(15:0/20:0) is a lipid of Glycerophospholipids (GP) class. Pe(15:0/20:0) is associated with abnormalities such as Exanthema, Infection, Painful Bladder Syndrome, Obesity and Fatty Liver. The involved functions are known as conjugation, Transcription, Genetic, Sinking, Autophagy and Protein Biosynthesis. Pe(15:0/20:0) often locates in membrane fraction, soluble, Membrane, Body tissue and Tissue membrane. The associated genes with PE(15:0/20:0) are GABARAPL2 gene, ATG10 gene, ATG12 gene, SLC33A1 gene and GABARAP gene. The related lipids are Liposomes, Lipopolysaccharides, Phosphatidylserines, Membrane Lipids and Cardiolipins. The related experimental models are Knock-out and Cancer Model.

Cross Reference

Introduction

To understand associated biological information of PE(15:0/20:0), we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with PE(15:0/20:0)?

PE(15:0/20:0) is suspected in Infection, CONE-ROD DYSTROPHY 1 (disorder), Diabetes, Obesity, Malaria, Atherosclerosis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with PE(15:0/20:0)

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Adenocarcinoma D000230 166 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with PE(15:0/20:0)

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with PE(15:0/20:0)?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with PE(15:0/20:0)?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with PE(15:0/20:0)?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with PE(15:0/20:0)?

Knock-out

Knock-out are used in the study 'Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo.' (Hörl G et al., 2011) and Knock-out are used in the study 'An Atg4B mutant hampers the lipidation of LC3 paralogues and causes defects in autophagosome closure.' (Fujita N et al., 2008).

Cancer Model

Cancer Model are used in the study 'Improving penetration in tumors with nanoassemblies of phospholipids and doxorubicin.' (Tang N et al., 2007).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with PE(15:0/20:0)

Download all related citations
Per page 10 20 50 100 | Total 1374
Authors Title Published Journal PubMed Link
Nguyen LT et al. Structural studies and model membrane interactions of two peptides derived from bovine lactoferricin. 2005 J. Pept. Sci. pmid:15635665
Kamimori H et al. Studies on the membrane interactions of the cyclotides kalata B1 and kalata B6 on model membrane systems by surface plasmon resonance. 2005 Anal. Biochem. pmid:15649388
Murzyn K et al. Phosphatidylethanolamine-phosphatidylglycerol bilayer as a model of the inner bacterial membrane. 2005 Biophys. J. pmid:15556990
Tsukamoto K et al. Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins. 2005 J. Biol. Chem. pmid:16115873
Suits F et al. Molecular dynamics investigation of the structural properties of phosphatidylethanolamine lipid bilayers. 2005 J Chem Phys pmid:16035800
Pitman MC et al. Molecular dynamics investigation of dynamical properties of phosphatidylethanolamine lipid bilayers. 2005 J Chem Phys pmid:16035801
Gohil VM et al. Synthetic lethal interaction of the mitochondrial phosphatidylethanolamine and cardiolipin biosynthetic pathways in Saccharomyces cerevisiae. 2005 J. Biol. Chem. pmid:16036913
Bonner PJ et al. The Dif chemosensory pathway is directly involved in phosphatidylethanolamine sensory transduction in Myxococcus xanthus. 2005 Mol. Microbiol. pmid:16102016
Jernigan Jr HM et al. Effects of cataractogenesis on the CDP-choline pathway: increased phospholipid synthesis in lenses from galactosemic rats and 13/N guinea pigs. 2005 Jan-Feb Ophthalmic Res. pmid:15604593
Pan XQ and Lee RJ In vivo antitumor activity of folate receptor-targeted liposomal daunorubicin in a murine leukemia model. 2005 Jan-Feb Anticancer Res. pmid:15816557
Funari SS et al. Farnesol and geranylgeraniol modulate the structural properties of phosphatidylethanolamine model membranes. 2005 Jul-Aug Mol. Membr. Biol. pmid:16154902
Hocquellet A et al. Evidence for a different metabolism of PC and PE in shoots and roots. 2005 Oct-Nov Plant Physiol. Biochem. pmid:16325411
Kolomytseva MP et al. [Heterogeneity of Rhodococcus opacus 1CP as a response to stress induced by chlorophenols]. 2005 Sep-Oct Prikl. Biokhim. Mikrobiol. pmid:16240653
Merino-Montero S et al. Effects of lactose permease of Escherichia coli on the anisotropy and electrostatic surface potential of liposomes. 2006 Biophys. Chem. pmid:16242835
Bourre JM et al. Fatty acid alterations in liver peroxisomes from n-3-deficient mice. 2006 Ann. Nutr. Metab. pmid:16407648
Song H et al. Coordinated alteration of hepatic gene expression in fatty acid and triglyceride synthesis in LCAT-null mice is associated with altered PUFA metabolism. 2006 Am. J. Physiol. Endocrinol. Metab. pmid:16105858
Bonner PJ and Shimkets LJ Phospholipid directed motility of surface-motile bacteria. 2006 Mol. Microbiol. pmid:16925549
Matsumoto K et al. Lipid domains in bacterial membranes. 2006 Mol. Microbiol. pmid:16925550
Yoon SJ et al. Interaction of N-linked glycans, having multivalent GlcNAc termini, with GM3 ganglioside. 2006 Glycoconj. J. pmid:17115280
Pernet F et al. Comparison of three solid-phase extraction methods for fatty acid analysis of lipid fractions in tissues of marine bivalves. 2006 J Chromatogr A pmid:17097094