Iodoacetic acid

Iodoacetic acid is a lipid of Fatty Acyls (FA) class. Iodoacetic acid is associated with abnormalities such as Photoreceptor degeneration and Post MI. The involved functions are known as Hypoxia, Glycolysis, Metabolic Inhibition, Oxidation and PTPS activity. Iodoacetic acid often locates in Extracellular, Muscle, Mitochondria, Cytoplasmic matrix and Tissue membrane. The associated genes with Iodoacetic acid are SLC33A1 gene, GTF2I gene, Mutant Proteins, TRIM33 gene and oxytocin, 1-desamino-(O-Et-Tyr)(2)-.

Cross Reference

Introduction

To understand associated biological information of Iodoacetic acid, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Iodoacetic acid?

Iodoacetic acid is suspected in Photoreceptor degeneration, Post MI and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Iodoacetic acid

MeSH term MeSH ID Detail
Pre-Eclampsia D011225 16 associated lipids
Cumulative Trauma Disorders D012090 2 associated lipids
Retinitis D012173 4 associated lipids
Rickets D012279 6 associated lipids
Rigor Mortis D012298 1 associated lipids
Sarcoma 180 D012510 21 associated lipids
Starvation D013217 47 associated lipids
Temporomandibular Joint Disorders D013705 4 associated lipids
Theileriasis D013801 7 associated lipids
Thrombocytopenia D013921 15 associated lipids
Per page 10 20 50 100 | Total 54

PubChem Associated disorders and diseases

What pathways are associated with Iodoacetic acid

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Iodoacetic acid?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Iodoacetic acid?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Iodoacetic acid?

There are no associated biomedical information in the current reference collection.

What genes are associated with Iodoacetic acid?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Iodoacetic acid?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Iodoacetic acid

Download all related citations
Per page 10 20 50 100 | Total 2490
Authors Title Published Journal PubMed Link
Ito Y et al. Oxidative stress increases glyceraldehyde-3-phosphate dehydrogenase mRNA levels in isolated rabbit aorta. 1996 Am. J. Physiol. pmid:8769737
Plishker GA et al. Involvement of a cytoplasmic protein in calcium-dependent potassium efflux in red blood cells. 1986 Am. J. Physiol. pmid:3532815
Wu Y et al. Alterations in reactive oxygen, pH, and calcium in astrocytoma cells during lethal injury. 1996 Am. J. Physiol. pmid:8772436
Matsumoto Y et al. Creatine kinase kinetics in diabetic cardiomyopathy. 1995 Am. J. Physiol. pmid:7611380
Satoh H and Vassalle M Role of calcium in caffeine-norepinephrine interactions in cardiac Purkinje fibers. 1989 Am. J. Physiol. pmid:2750939
Griendling KK et al. Pregnancy-induced changes in sheep uterine and carotid arteries. 1985 Am. J. Physiol. pmid:2581458
Alvarado RH et al. Chloride transport across isolated skin of Rana pipiens. 1975 Am. J. Physiol. pmid:1082245
Bagnasco S et al. Lactate production in isolated segments of the rat nephron. 1985 Am. J. Physiol. pmid:3985159
Plishker GA Iodoacetic acid inhibition of calcium-dependent potassium efflux in red blood cells. 1985 Am. J. Physiol. pmid:3993768
Beauwens R et al. Polycations reduce vasopressin-induced water flow by endocytic removal of water channels. 1986 Am. J. Physiol. pmid:3010730
Sick TJ et al. Brain potassium ion homeostasis, anoxia, and metabolic inhibition in turtles and rats. 1982 Am. J. Physiol. pmid:6287869
SANDOW A and KARCZMAR AG Effect of iodoacetate on changes in muscular latency induced by activity. 1950 Am. J. Physiol. pmid:14789991
Shryock JC et al. Release of adenosine from pig aortic endothelial cells during hypoxia and metabolic inhibition. 1988 Am. J. Physiol. pmid:3344813
Apstein CS et al. Acute cardiac ischemia and reperfusion: contractility, relaxation, and glycolysis. 1978 Am. J. Physiol. pmid:736151
Rodríguez-Estrada C Reduced nicotinamide adenine dinucleotide and depolarization in neurons. 1975 Am. J. Physiol. pmid:165729
Koss KL and Grubbs RD Elevated extracellular Mg2+ increases Mg2+ buffering through a Ca-dependent mechanism in cardiomyocytes. 1994 Am. J. Physiol. pmid:8074196
Xie LH et al. Development of inwardly rectifying K+ channel family in rat ventricular myocytes. 1997 Am. J. Physiol. pmid:9139958
Lorenz JN and Paul RJ Dependence of Ca2+ channel currents on endogenous and exogenous sources of ATP in portal vein smooth muscle. 1997 Am. J. Physiol. pmid:9124463
Ahearn GA Intestinal electrophysiology and transmural ion transport in freshwater prawns. 1980 Am. J. Physiol. pmid:7395980
Miyazaki Y et al. Selective turnover of sarcolemmal phospholipids with lethal cardiac myocyte injury. 1990 Am. J. Physiol. pmid:2382705