Zaragozic acid A

Zaragozic acid A is a lipid of Polyketides (PK) class. Zaragozic acid a is associated with abnormalities such as Hypercholesterolemia, Diabetes Mellitus, Non-Insulin-Dependent, Cardiovascular morbidity, Atherosclerosis and Infection. The involved functions are known as Anabolism, Sterol Biosynthesis Pathway, isoprenoid biosynthetic process, Biochemical Pathway and Adverse effects. Zaragozic acid a often locates in Endoplasmic reticulum, membrane, viral nucleocapsid location, Cell surface, Hepatic and Membrane. The associated genes with Zaragozic acid A are DPM1 gene, PMM2 gene, STN gene, SLC6A7 gene and Amyloid beta-Protein Precursor. The related lipids are Sterols, Fatty Acids, Membrane Lipids, farnesoic acid and Unilamellar Vesicles. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Zaragozic acid A, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Zaragozic acid A?

Zaragozic acid A is suspected in Hypercholesterolemia, Cardiovascular Diseases, Prion Diseases, Coronary Artery Disease, Diabetes Mellitus, Non-Insulin-Dependent, Cardiovascular morbidity and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Zaragozic acid A

MeSH term MeSH ID Detail
Leukemia, Myeloid D007951 52 associated lipids
Biliary Fistula D001658 13 associated lipids
Total 2

PubChem Associated disorders and diseases

What pathways are associated with Zaragozic acid A

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Zaragozic acid A through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Zaragozic acid A?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Zaragozic acid A?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Zaragozic acid A?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Zaragozic acid A?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Zaragozic acid A?

Mouse Model

Mouse Model are used in the study 'Improvement of dolichol-linked oligosaccharide biosynthesis by the squalene synthase inhibitor zaragozic acid.' (Haeuptle MA et al., 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Zaragozic acid A

Download all related citations
Per page 10 20 50 100 | Total 105
Authors Title Published Journal PubMed Link
Michikawa M and Yanagisawa K Apolipoprotein E4 isoform-specific actions on neuronal cells in culture. 1999 Mech. Ageing Dev. pmid:10360679
Vaidya S et al. Massive production of farnesol-derived dicarboxylic acids in mice treated with the squalene synthase inhibitor zaragozic acid A. 1998 Arch. Biochem. Biophys. pmid:9647670
Thompson JF et al. Truncation of human squalene synthase yields active, crystallizable protein. 1998 Arch. Biochem. Biophys. pmid:9473303
Kocarek TA et al. Regulation of rat hepatic cytochrome P450 expression by sterol biosynthesis inhibition: inhibitors of squalene synthase are potent inducers of CYP2B expression in primary cultured rat hepatocytes and rat liver. 1998 Mol. Pharmacol. pmid:9730906
Lopez D et al. Compensatory responses to inhibition of hepatic squalene synthase. 1998 Arch. Biochem. Biophys. pmid:9514656
Corsini A et al. [Pharmacological control of biosynthesis pathway of mevalonate: effect on the proliferation of arterial smooth muscle cells]. 1997 C. R. Seances Soc. Biol. Fil. pmid:9255346
Onishi JC et al. Antimicrobial activity of viridiofungins. 1997 J. Antibiot. pmid:9186560
Pirillo A et al. Simvastatin modulates the heat shock response and cytotoxicity mediated by oxidized LDL in cultured human endothelial smooth muscle cells. 1997 Biochem. Biophys. Res. Commun. pmid:9070296
Bostedor RG et al. Farnesol-derived dicarboxylic acids in the urine of animals treated with zaragozic acid A or with farnesol. 1997 J. Biol. Chem. pmid:9083051
Peffley DM and Gayen AK Inhibition of squalene synthase but not squalene cyclase prevents mevalonate-mediated suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase synthesis at a posttranscriptional level. 1997 Arch. Biochem. Biophys. pmid:9016820
Vlahcevic ZR et al. Quantitative estimations of the contribution of different bile acid pathways to total bile acid synthesis in the rat. 1997 Gastroenterology pmid:9394735
Procopiou PA et al. The squalestatins: inhibitors of squalene synthase. Enzyme inhibitory activities and in vivo evaluation of C3-modified analogues. 1996 J. Med. Chem. pmid:8691471
Ness GC et al. Inhibitors of cholesterol biosynthesis increase hepatic low-density lipoprotein receptor protein degradation. 1996 Arch. Biochem. Biophys. pmid:8561503
Keller RK Squalene synthase inhibition alters metabolism of nonsterols in rat liver. 1996 Biochim. Biophys. Acta pmid:8908150
Stankewich MC et al. Alterations in cell cholesterol content modulate Ca(2+)-induced tight junction assembly by MDCK cells. 1996 Lipids pmid:8869884
Chan C et al. The squalestatins: decarboxy and 4-deoxy analogues as potent squalene synthase inhibitors. 1996 J. Med. Chem. pmid:8568810
Keller RK et al. Farnesol is not the nonsterol regulator mediating degradation of HMG-CoA reductase in rat liver. 1996 Arch. Biochem. Biophys. pmid:8645011
Middleton RF et al. Novel squalestatins produced by biotransformation. 1995 J. Antibiot. pmid:7775268
Bamford MJ et al. The squalestatins: synthesis and biological activity of some C3-modified analogues; replacement of a carboxylic acid or methyl ester with an isoelectronic heterocyclic functionality. 1995 J. Med. Chem. pmid:7658437
Lindsey S and Harwood HJ Inhibition of mammalian squalene synthetase activity by zaragozic acid A is a result of competitive inhibition followed by mechanism-based irreversible inactivation. 1995 J. Biol. Chem. pmid:7721822