tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Abnormalities, Multiple D000015 13 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Acne Vulgaris D000152 35 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adrenal Insufficiency D000309 3 associated lipids
Akinetic Mutism D000405 1 associated lipids
Albuminuria D000419 18 associated lipids
Alopecia D000505 14 associated lipids
Alopecia Areata D000506 6 associated lipids
Alzheimer Disease D000544 76 associated lipids
Amenorrhea D000568 4 associated lipids
Amputation, Traumatic D000673 2 associated lipids
Anemia D000740 21 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Anemia, Hemolytic D000743 4 associated lipids
Anemia, Hemolytic, Autoimmune D000744 5 associated lipids
Anemia, Refractory D000753 3 associated lipids
Anemia, Refractory, with Excess of Blasts D000754 2 associated lipids
Aneurysm, Dissecting D000784 2 associated lipids
Angiolymphoid Hyperplasia with Eosinophilia D000796 1 associated lipids
Angioedema D000799 6 associated lipids
Anus Diseases D001004 3 associated lipids
Apraxias D001072 1 associated lipids
Arm Injuries D001134 1 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Ascites D001201 25 associated lipids
Ataxia D001259 20 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Bacterial Infections D001424 21 associated lipids
Balanitis D001446 4 associated lipids
Beckwith-Wiedemann Syndrome D001506 1 associated lipids
Behcet Syndrome D001528 7 associated lipids
Biliary Fistula D001658 13 associated lipids
Biliary Tract Neoplasms D001661 7 associated lipids
Blepharitis D001762 4 associated lipids
Blindness D001766 6 associated lipids
Body Weight D001835 333 associated lipids
Bone Diseases D001847 4 associated lipids
Bradycardia D001919 13 associated lipids
Brain Diseases D001927 27 associated lipids
Brain Edema D001929 20 associated lipids
Bronchiolitis D001988 6 associated lipids
Bronchiolitis Obliterans D001989 8 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Tümgör G et al. A case of uneventful ABO-incompatible liver transplantation from a deceased donor managed with routine immunosuppressive treatment. 2014 Turk J Gastroenterol pmid:25599790
Dinçkan A et al. Evaluation of the first 100 liver transplantations. 2008 Turk J Gastroenterol pmid:18386237
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
Vincenti F A decade of progress in kidney transplantation. 2004 Transplantation pmid:15201687
Shirakata Y et al. Inhibitory effect of plasma FKBP12 on immunosuppressive activity of FK506. 1995 Transplantation pmid:8545894
Burke GW et al. Advances in pancreas transplantation. 2004 Transplantation pmid:15201688
Pfitzmann R et al. Mycophenolatemofetil for immunosuppression after liver transplantation: a follow-up study of 191 patients. 2003 Transplantation pmid:12865798
Méndez A et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. 2014 Transplantation pmid:24492423
Moffatt SD et al. Potential for improved therapeutic index of FK506 in liposomal formulation demonstrated in a mouse cardiac allograft model. 1999 Transplantation pmid:10342309
Krentz AJ et al. Postoperative glucose metabolism in liver transplant recipients. A two-year prospective randomized study of cyclosporine versus FK506. 1994 Transplantation pmid:7516590
Briggs D et al. Effects of immediate switch from cyclosporine microemulsion to tacrolimus at first acute rejection in renal allograft recipients. 2003 Transplantation pmid:12829912
Utsugi R et al. Induction of transplantation tolerance with a short course of tacrolimus (FK506): I. Rapid and stable tolerance to two-haplotype fully mhc-mismatched kidney allografts in miniature swine. 2001 Transplantation pmid:11391221
Yin DP et al. Lewis rat pancreas, but not cardiac xenografts, are resistant to anti-gal antibody mediated hyperacute rejection. 2001 Transplantation pmid:11391223
Krentz AJ Posttransplantation Diabetes Mellitus in FK-506-Treated Renal Transplant Recipients: Analysis of Incidence and Risk Factors. Transplantation 2001; 72: 1655. 2001 Transplantation pmid:11726815
Bruce DS et al. Multicenter survey of daclizumab induction in simultaneous kidney-pancreas transplant recipients. 2001 Transplantation pmid:11726823
Sanchez-Campos S et al. Cholestasis and alterations of glutathione metabolism induced by tacrolimus (FK506) in the rat. 1998 Transplantation pmid:9679826
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Bronster DJ et al. Tacrolimus-associated mutism after orthotopic liver transplantation. 2000 Transplantation pmid:11014653
Newell KA et al. Posttransplant lymphoproliferative disease in pediatric liver transplantation. Interplay between primary Epstein-Barr virus infection and immunosuppression. 1996 Transplantation pmid:8779685
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Muraki T et al. Effects of cyclosporine and FK506 on in vitro high shear-induced platelet reactivity in rat and human non-anticoagulated blood. 1998 Transplantation pmid:9583878
Kadry Z et al. Kaposi's sarcoma in liver transplant recipients on FK506. 1998 Transplantation pmid:9583882
Luan FL et al. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. 2011 Transplantation pmid:21242885
Ho ET et al. Once-daily extended-release versus twice-daily standard-release tacrolimus in kidney transplant recipients: a systematic review. 2013 Transplantation pmid:23542469
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Porrini E et al. Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. 2008 Transplantation pmid:18431233
Veroux M et al. Impact of conversion to a once daily tacrolimus-based regimen in kidney transplant recipients with gastrointestinal complications. 2012 Transplantation pmid:22298033
Inoue T et al. Lesser reduction in bone mineral density by the immunosuppressant, FK506, compared with cyclosporine in rats. 2000 Transplantation pmid:11003356
Kessler L et al. Tacrolimus-associated optic neuropathy after pancreatic islet transplantation using a sirolimus/tacrolimus immunosuppressive regimen. 2006 Transplantation pmid:16495816
Holt S and Moore K Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. 2002 Transplantation pmid:11907407
Yang H et al. Liposomal encapsulation significantly enchances the immunosuppressive effect of tacrolimus in a discordant islet xenotransplant model. 2002 Transplantation pmid:11907415
St A Nunes FA and Lucey MR Searching for a balance when applying immunosuppression after liver transplantation. 2001 Transplantation pmid:11258425
Meiser BM The best dosing for initial tacrolimus application is trough level adapted! 2005 Transplantation pmid:15714162
Apanay DC et al. Cyclosporine increases the oxidizability of low-density lipoproteins in renal transplant recipients. 1994 Transplantation pmid:7524202
Sonoda T et al. Outcome of 3 years of immunosuppression with tacrolimus in more than 1,000 renal transplant recipients in japan. 2003 Transplantation pmid:12548123
Guthery SL et al. Determination of risk factors for Epstein-Barr virus-associated posttransplant lymphoproliferative disorder in pediatric liver transplant recipients using objective case ascertainment. 2003 Transplantation pmid:12698085
Jain A et al. The absence of chronic rejection in pediatric primary liver transplant patients who are maintained on tacrolimus-based immunosuppression: a long-term analysis. 2003 Transplantation pmid:12698091
Murase N et al. Graft-versus-host disease after brown Norway-to-Lewis and Lewis-to-Brown Norway rat intestinal transplantation under FK506. 1993 Transplantation pmid:7678353
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177