tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Hyperlipidemias D006949 73 associated lipids
Hyperparathyroidism, Secondary D006962 4 associated lipids
Hypersensitivity D006967 22 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypersensitivity, Immediate D006969 14 associated lipids
Hypertension D006973 115 associated lipids
Hypertension, Portal D006975 12 associated lipids
Hypertension, Renal D006977 9 associated lipids
Hypoglycemia D007003 13 associated lipids
Hypotension D007022 41 associated lipids
Hypothermia D007035 19 associated lipids
Ileal Neoplasms D007078 2 associated lipids
Immunoblastic Lymphadenopathy D007119 2 associated lipids
Immunologic Deficiency Syndromes D007153 8 associated lipids
Immune System Diseases D007154 3 associated lipids
Impetigo D007169 3 associated lipids
Erectile Dysfunction D007172 19 associated lipids
Inappropriate ADH Syndrome D007177 4 associated lipids
Incontinentia Pigmenti D007184 2 associated lipids
Infection D007239 6 associated lipids
Inflammation D007249 119 associated lipids
Influenza, Human D007251 11 associated lipids
Insulin Resistance D007333 99 associated lipids
Intertrigo D007402 1 associated lipids
Intestinal Atresia D007409 3 associated lipids
Intestinal Fistula D007412 1 associated lipids
Intestinal Pseudo-Obstruction D007418 5 associated lipids
Intussusception D007443 1 associated lipids
Ischemia D007511 18 associated lipids
Kaposi Varicelliform Eruption D007617 1 associated lipids
Kartagener Syndrome D007619 2 associated lipids
Keloid D007627 12 associated lipids
Kidney Diseases D007674 29 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Kidney Tubular Necrosis, Acute D007683 3 associated lipids
Vulvar Lichen Sclerosus D007724 1 associated lipids
Labyrinthitis D007762 2 associated lipids
Leg Injuries D007869 2 associated lipids
Legionellosis D007876 3 associated lipids
Lentigo D007911 1 associated lipids
Leukemia D007938 74 associated lipids
Leukemia P388 D007941 43 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Leukocytosis D007964 9 associated lipids
Leukoplakia D007971 1 associated lipids
Leukoplakia, Oral D007972 1 associated lipids
Lichen Planus D008010 3 associated lipids
Listeriosis D008088 12 associated lipids
Liver Abscess D008100 6 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Liver Cirrhosis, Alcoholic D008104 17 associated lipids
Liver Cirrhosis, Biliary D008105 12 associated lipids
Liver Diseases D008107 31 associated lipids
Long QT Syndrome D008133 10 associated lipids
Lung Abscess D008169 1 associated lipids
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Lupus Erythematosus, Cutaneous D008178 2 associated lipids
Lupus Erythematosus, Discoid D008179 1 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lupus Nephritis D008181 8 associated lipids
Lymphocele D008210 1 associated lipids
Lymphocytic Choriomeningitis D008216 1 associated lipids
Lymphoma D008223 18 associated lipids
Lymphomatoid Granulomatosis D008230 2 associated lipids
Lymphoproliferative Disorders D008232 7 associated lipids
Malacoplakia D008287 1 associated lipids
Malocclusion, Angle Class II D008312 1 associated lipids
Mastocytosis D008415 5 associated lipids
Mediastinal Diseases D008477 1 associated lipids
Mediastinal Emphysema D008478 1 associated lipids
Mediastinitis D008480 2 associated lipids
Megacolon, Toxic D008532 1 associated lipids
Melanoma D008545 69 associated lipids
Memory Disorders D008569 33 associated lipids
Meningococcal Infections D008589 3 associated lipids
Meningoencephalitis D008590 4 associated lipids
Metaplasia D008679 7 associated lipids
Mite Infestations D008924 1 associated lipids
Molluscum Contagiosum D008976 2 associated lipids
Mouth Diseases D009059 5 associated lipids
Moyamoya Disease D009072 1 associated lipids
Multiple Myeloma D009101 13 associated lipids
Muscular Dystrophies D009136 10 associated lipids
Mutism D009155 1 associated lipids
Myasthenia Gravis D009157 5 associated lipids
Mycobacterium Infections D009164 7 associated lipids
Mycobacterium Infections, Nontuberculous D009165 8 associated lipids
Mycoses D009181 18 associated lipids
Myelitis D009187 1 associated lipids
Myxedema D009230 2 associated lipids
Nail Diseases D009260 2 associated lipids
Necrobiosis Lipoidica D009335 2 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Neoplasm Recurrence, Local D009364 5 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Nephritis D009393 19 associated lipids
Nephritis, Hereditary D009394 1 associated lipids
Nephritis, Interstitial D009395 10 associated lipids
Nephrotic Syndrome D009404 11 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Tümgör G et al. A case of uneventful ABO-incompatible liver transplantation from a deceased donor managed with routine immunosuppressive treatment. 2014 Turk J Gastroenterol pmid:25599790
Dinçkan A et al. Evaluation of the first 100 liver transplantations. 2008 Turk J Gastroenterol pmid:18386237
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Pech T et al. Combination therapy of tacrolimus and infliximab reduces inflammatory response and dysmotility in experimental small bowel transplantation in rats. 2012 Transplantation pmid:22167049
Rosen HR et al. Significance of early aminotransferase elevation after liver transplantation. 1998 Transplantation pmid:9448146
McCune TR et al. Effects of tacrolimus on hyperlipidemia after successful renal transplantation: a Southeastern Organ Procurement Foundation multicenter clinical study. 1998 Transplantation pmid:9448150
Ciancio G et al. Randomized trial of three induction antibodies in kidney transplantation: long-term results. 2014 Transplantation pmid:24477186
Dresske B et al. WOFIE synergizes with calcineurin-inhibitor treatment and early steroid withdrawal in kidney transplantation. 2003 Transplantation pmid:12717217
Gayowski T et al. Orthotopic liver transplantation in high-risk patients: risk factors associated with mortality and infectious morbidity. 1998 Transplantation pmid:9500623
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
Kim YI et al. Stimulation of liver regeneration by pretreatment with azathioprine as well as cyclosporine and FK506. 1992 Transplantation pmid:1373539
Eiras G et al. Species differences in sensitivity of T lymphocytes to immunosuppressive effects of FK 506. 1990 Transplantation pmid:1694318
D'Antiga L et al. Late cellular rejection in paediatric liver transplantation: aetiology and outcome. 2002 Transplantation pmid:11792983
Tze WJ et al. In vitro effects of FK-506 on human and rat islets. 1990 Transplantation pmid:1694319
Deuse T et al. The interaction between FK778 and tacrolimus in the prevention of rat cardiac allograft rejection is dose dependent. 2004 Transplantation pmid:15084926
Ferraris JR et al. Conversion from cyclosporine A to tacrolimus in pediatric kidney transplant recipients with chronic rejection: changes in the immune responses. 2004 Transplantation pmid:15084930
Shapiro R et al. Posttransplant lymphoproliferative disorders in adult and pediatric renal transplant patients receiving tacrolimus-based immunosuppression. 1999 Transplantation pmid:10628763
Kessler M et al. A renal allograft recipient with late recurrence of focal and segmental glomerulosclerosis after switching from cyclosporine to tacrolimus. 1999 Transplantation pmid:10071045
Grudé P et al. MDR1 gene expression in peripheral blood mononuclear cells after liver transplantation. 2002 Transplantation pmid:12085008
Xu X et al. FKBP12 is the only FK506 binding protein mediating T-cell inhibition by the immunosuppressant FK506. 2002 Transplantation pmid:12085010
Mueller AR et al. Neurotoxicity after orthotopic liver transplantation. A comparison between cyclosporine and FK506. 1994 Transplantation pmid:7518974
Hirano Y et al. The effects of FK506 and cyclosporine on the exocrine function of the rat pancreas. 1992 Transplantation pmid:1279850
Cassuto E et al. Adherence to and Acceptance of Once-Daily Tacrolimus After Kidney and Liver Transplant: Results From OSIRIS, a French Observational Study. 2016 Transplantation pmid:27653227
Takaya S et al. Liver transplantation in positive cytotoxic crossmatch cases using FK506, high-dose steroids, and prostaglandin E1. 1992 Transplantation pmid:1279851
Wasik M et al. Effect of FK506 versus cyclosporine on human natural and antibody-dependent cytotoxicity reactions in vitro. 1991 Transplantation pmid:1702910
Jin S et al. Effect of tacrolimus on the expression of macrophage scavenger and nuclear hormone receptors in THP-1-derived human macrophages. 2004 Transplantation pmid:15114099
Straatman LP and Coles JG Pediatric utilization of rapamycin for severe cardiac allograft rejection. 2000 Transplantation pmid:10949201
Burke GW et al. Microangiopathy in kidney and simultaneous pancreas/kidney recipients treated with tacrolimus: evidence of endothelin and cytokine involvement. 1999 Transplantation pmid:10573073
Tokita D et al. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. 2008 Transplantation pmid:18301333
Opelz G Comparison of FK506 and cyclosporine. 1996 Transplantation pmid:8830844
Yoshimura N et al. Effect of a new immunosuppressive agent, FK506, on human lymphocyte responses in vitro. I. Inhibition of expression of alloantigen-activated suppressor cells, as well as induction of alloreactivity. 1989 Transplantation pmid:2465592
Takatsuki M et al. Weaning of immunosuppression in living donor liver transplant recipients. 2001 Transplantation pmid:11502975
Moffatt SD et al. STAT 6 up-regulation by FK506 in the presence of interleukin-4. 2000 Transplantation pmid:10798785
Augustine JJ et al. Improved renal function after conversion from tacrolimus/sirolimus to tacrolimus/mycophenolate mofetil in kidney transplant recipients. 2006 Transplantation pmid:16612276
Ochiai T et al. Effects of combination treatment with FK506 and cyclosporine on survival time and vascular changes in renal-allograft-recipient dogs. 1989 Transplantation pmid:2474209
Hougardy JM et al. Conversion from Prograf to Advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. 2011 Transplantation pmid:21192316
Vanrenterghem Y et al. The effects of FK778 in combination with tacrolimus and steroids: a phase II multicenter study in renal transplant patients. 2004 Transplantation pmid:15257032
van Hooff JP et al. Tacrolimus and posttransplant diabetes mellitus in renal transplantation. 2005 Transplantation pmid:15940032
Gaber AO et al. Conversion from twice-daily tacrolimus capsules to once-daily extended-release tacrolimus (LCPT): a phase 2 trial of stable renal transplant recipients. 2013 Transplantation pmid:23715050
Pascher A et al. Successful infliximab treatment of steroid and OKT3 refractory acute cellular rejection in two patients after intestinal transplantation. 2003 Transplantation pmid:12923454
Wiesner RH A long-term comparison of tacrolimus (FK506) versus cyclosporine in liver transplantation: a report of the United States FK506 Study Group. 1998 Transplantation pmid:9734494