tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Denys-Drash Syndrome D030321 1 associated lipids
Hypophosphatemia D017674 1 associated lipids
Moyamoya Disease D009072 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Leukoplakia D007971 1 associated lipids
Oculomotor Nerve Diseases D015840 1 associated lipids
Scorpion Stings D065008 1 associated lipids
Esophageal Perforation D004939 1 associated lipids
Mediastinitis D008480 2 associated lipids
Coproporphyria, Hereditary D046349 1 associated lipids
Ileus D045823 3 associated lipids
Rectal Diseases D012002 1 associated lipids
Angiolymphoid Hyperplasia with Eosinophilia D000796 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Finn L et al. Epstein-Barr virus infections in children after transplantation of the small intestine. 1998 Am. J. Surg. Pathol. pmid:9500771
Randhawa PS et al. The histopathological changes associated with allograft rejection and drug toxicity in renal transplant recipients maintained on FK506. Clinical significance and comparison with cyclosporine. 1993 Am. J. Surg. Pathol. pmid:7680544
Minervini MI et al. Acute renal allograft rejection with severe tubulitis (Banff 1997 grade IB). 2000 Am. J. Surg. Pathol. pmid:10757402
Randhawa PS et al. Microvascular changes in renal allografts associated with FK506 (Tacrolimus) therapy. 1996 Am. J. Surg. Pathol. pmid:8772784
Kim EJ et al. Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection. 2014 Am. J. Transplant. pmid:24354871
Kandaswamy R et al. A prospective randomized trial of steroid-free maintenance regimens in kidney transplant recipients--an interim analysis. 2005 Am. J. Transplant. pmid:15888064
Xu H et al. The allo- and viral-specific immunosuppressive effect of belatacept, but not tacrolimus, attenuates with progressive T cell maturation. 2014 Am. J. Transplant. pmid:24472192
Coghill AE et al. Immunosuppressive Medications and Squamous Cell Skin Carcinoma: Nested Case-Control Study Within the Skin Cancer after Organ Transplant (SCOT) Cohort. 2016 Am. J. Transplant. pmid:26824445
Zafrani L et al. Incidence, risk factors and clinical consequences of neutropenia following kidney transplantation: a retrospective study. 2009 Am. J. Transplant. pmid:19538494
Krämer BK et al. Tacrolimus once daily (ADVAGRAF) versus twice daily (PROGRAF) in de novo renal transplantation: a randomized phase III study. 2010 Am. J. Transplant. pmid:20840480
Trunečka P et al. Once-daily prolonged-release tacrolimus (ADVAGRAF) versus twice-daily tacrolimus (PROGRAF) in liver transplantation. 2010 Am. J. Transplant. pmid:20840481
Wang Q et al. Biodegradable microsphere-loaded tacrolimus enhanced the effect on mice islet allograft and reduced the adverse effect on insulin secretion. 2004 Am. J. Transplant. pmid:15084166
Schubert M et al. Pharmacokinetics of sirolimus and tacrolimus in pediatric transplant patients. 2004 Am. J. Transplant. pmid:15084173
ter Meulen CG et al. Steroid-withdrawal at 3 days after renal transplantation with anti-IL-2 receptor alpha therapy: a prospective, randomized, multicenter study. 2004 Am. J. Transplant. pmid:15084178
Mehra MR et al. Immunosuppression in cardiac transplantation: science, common sense and the heart of the matter. 2006 Am. J. Transplant. pmid:16686745
Grimm M et al. Superior prevention of acute rejection by tacrolimus vs. cyclosporine in heart transplant recipients--a large European trial. 2006 Am. J. Transplant. pmid:16686762
Budde K et al. Novel once-daily extended-release tacrolimus (LCPT) versus twice-daily tacrolimus in de novo kidney transplants: one-year results of Phase III, double-blind, randomized trial. 2014 Am. J. Transplant. pmid:25278376
Böhmig GA et al. Immunoadsorption in severe C4d-positive acute kidney allograft rejection: a randomized controlled trial. 2007 Am. J. Transplant. pmid:17109725
Budde K et al. Sotrastaurin, a novel small molecule inhibiting protein kinase C: first clinical results in renal-transplant recipients. 2010 Am. J. Transplant. pmid:20121745
Bouamar R et al. Tacrolimus predose concentrations do not predict the risk of acute rejection after renal transplantation: a pooled analysis from three randomized-controlled clinical trials(†). 2013 Am. J. Transplant. pmid:23480233
Busque S et al. The PROMISE study: a phase 2b multicenter study of voclosporin (ISA247) versus tacrolimus in de novo kidney transplantation. 2011 Am. J. Transplant. pmid:21943027
Artz MA et al. Conversion from cyclosporine to tacrolimus improves quality-of-life indices, renal graft function and cardiovascular risk profile. 2004 Am. J. Transplant. pmid:15147428
Hamdy AF et al. Comparison of sirolimus with low-dose tacrolimus versus sirolimus-based calcineurin inhibitor-free regimen in live donor renal transplantation. 2005 Am. J. Transplant. pmid:16162204
Kaufman DB et al. Alemtuzumab induction and prednisone-free maintenance immunotherapy in kidney transplantation: comparison with basiliximab induction--long-term results. 2005 Am. J. Transplant. pmid:16162205
Naesens M et al. Tacrolimus exposure and evolution of renal allograft histology in the first year after transplantation. 2007 Am. J. Transplant. pmid:17608835
Schwarz A et al. Polyoma virus nephropathy in native kidneys after lung transplantation. 2005 Am. J. Transplant. pmid:16162212
Shemesh E et al. The Medication Level Variability Index (MLVI) Predicts Poor Liver Transplant Outcomes: A Prospective Multi-Site Study. 2017 Am. J. Transplant. pmid:28321975
Van Laecke S et al. Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. 2009 Am. J. Transplant. pmid:19624560
Pirenne J et al. Tolerance of liver transplant patients to strenuous physical activity in high-altitude. 2004 Am. J. Transplant. pmid:15023147
Heisel O et al. New onset diabetes mellitus in patients receiving calcineurin inhibitors: a systematic review and meta-analysis. 2004 Am. J. Transplant. pmid:15023151
Hardinger KL et al. Pharmacokinetics of tacrolimus in kidney transplant recipients: twice daily versus once daily dosing. 2004 Am. J. Transplant. pmid:15023155
Suwelack B et al. Withdrawal of cyclosporine or tacrolimus after addition of mycophenolate mofetil in patients with chronic allograft nephropathy. 2004 Am. J. Transplant. pmid:15023160
Diaz-Siso JR et al. Initial experience of dual maintenance immunosuppression with steroid withdrawal in vascular composite tissue allotransplantation. 2015 Am. J. Transplant. pmid:25777324
Rodriguez-Rodriguez AE et al. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. 2013 Am. J. Transplant. pmid:23651473
Klintmalm GB et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. 2014 Am. J. Transplant. pmid:25041339
Momper JD et al. The impact of conversion from prograf to generic tacrolimus in liver and kidney transplant recipients with stable graft function. 2011 Am. J. Transplant. pmid:21714845
TruneÄŒka P et al. Renal Function in De Novo Liver Transplant Recipients Receiving Different Prolonged-Release Tacrolimus Regimens-The DIAMOND Study. 2015 Am. J. Transplant. pmid:25707487
Lemahieu WP et al. CYP3A4 and P-glycoprotein activity in healthy controls and transplant patients on cyclosporin vs. tacrolimus vs. sirolimus. 2004 Am. J. Transplant. pmid:15307840
Oetting WS et al. Genomewide Association Study of Tacrolimus Concentrations in African American Kidney Transplant Recipients Identifies Multiple CYP3A5 Alleles. 2016 Am. J. Transplant. pmid:26485092
Badri P et al. Pharmacokinetics and dose recommendations for cyclosporine and tacrolimus when coadministered with ABT-450, ombitasvir, and dasabuvir. 2015 Am. J. Transplant. pmid:25708713
Larson TS et al. Complete avoidance of calcineurin inhibitors in renal transplantation: a randomized trial comparing sirolimus and tacrolimus. 2006 Am. J. Transplant. pmid:16468960
Vitko S et al. Tacrolimus combined with two different dosages of sirolimus in kidney transplantation: results of a multicenter study. 2006 Am. J. Transplant. pmid:16468962
Woywodt A et al. Different preparations of tacrolimus and medication errors. 2008 Am. J. Transplant. pmid:18786238
Servais A et al. Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. 2011 Am. J. Transplant. pmid:21672152
Bourdeaux C et al. Living-related versus deceased donor pediatric liver transplantation: a multivariate analysis of technical and immunological complications in 235 recipients. 2007 Am. J. Transplant. pmid:17173657
Rostaing L et al. Alefacept combined with tacrolimus, mycophenolate mofetil and steroids in de novo kidney transplantation: a randomized controlled trial. 2013 Am. J. Transplant. pmid:23730730
Ciancio G et al. Advantage of rapamycin over mycophenolate mofetil when used with tacrolimus for simultaneous pancreas kidney transplants: randomized, single-center trial at 10 years. 2012 Am. J. Transplant. pmid:22946986
Jacobson PA et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. 2012 Am. J. Transplant. pmid:22947444
De Simone P et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. 2012 Am. J. Transplant. pmid:22882750
Miller LW Cardiovascular toxicities of immunosuppressive agents. 2002 Am. J. Transplant. pmid:12392286