tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Denys-Drash Syndrome D030321 1 associated lipids
Hypophosphatemia D017674 1 associated lipids
Moyamoya Disease D009072 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Leukoplakia D007971 1 associated lipids
Oculomotor Nerve Diseases D015840 1 associated lipids
Scorpion Stings D065008 1 associated lipids
Esophageal Perforation D004939 1 associated lipids
Mediastinitis D008480 2 associated lipids
Coproporphyria, Hereditary D046349 1 associated lipids
Ileus D045823 3 associated lipids
Rectal Diseases D012002 1 associated lipids
Angiolymphoid Hyperplasia with Eosinophilia D000796 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Djamali A et al. Nox2 is a mediator of chronic CsA nephrotoxicity. 2012 Am. J. Transplant. pmid:22568654
Cavadas PC et al. Bilateral trans-humeral arm transplantation: result at 2 years. 2011 Am. J. Transplant. pmid:21521475
Qazi Y et al. Efficacy and Safety of Everolimus Plus Low-Dose Tacrolimus Versus Mycophenolate Mofetil Plus Standard-Dose Tacrolimus in De Novo Renal Transplant Recipients: 12-Month Data. 2017 Am. J. Transplant. pmid:27775865
Egli A et al. Renal failure five years after lung transplantation due to polyomavirus BK-associated nephropathy. 2010 Am. J. Transplant. pmid:20840474
Zafrani L et al. Incidence, risk factors and clinical consequences of neutropenia following kidney transplantation: a retrospective study. 2009 Am. J. Transplant. pmid:19538494
Touzot M et al. Renal transplantation in HIV-infected patients: the Paris experience. 2010 Am. J. Transplant. pmid:20840478
Krämer BK et al. Tacrolimus once daily (ADVAGRAF) versus twice daily (PROGRAF) in de novo renal transplantation: a randomized phase III study. 2010 Am. J. Transplant. pmid:20840480
Trunečka P et al. Once-daily prolonged-release tacrolimus (ADVAGRAF) versus twice-daily tacrolimus (PROGRAF) in liver transplantation. 2010 Am. J. Transplant. pmid:20840481
Wang Q et al. Biodegradable microsphere-loaded tacrolimus enhanced the effect on mice islet allograft and reduced the adverse effect on insulin secretion. 2004 Am. J. Transplant. pmid:15084166
Schubert M et al. Pharmacokinetics of sirolimus and tacrolimus in pediatric transplant patients. 2004 Am. J. Transplant. pmid:15084173
ter Meulen CG et al. Steroid-withdrawal at 3 days after renal transplantation with anti-IL-2 receptor alpha therapy: a prospective, randomized, multicenter study. 2004 Am. J. Transplant. pmid:15084178
Borrows R et al. Steroid sparing with tacrolimus and mycophenolate mofetil in renal transplantation. 2004 Am. J. Transplant. pmid:15476485
Hernández-Fisac I et al. Tacrolimus-induced diabetes in rats courses with suppressed insulin gene expression in pancreatic islets. 2007 Am. J. Transplant. pmid:17725683
Budde K et al. Sotrastaurin, a novel small molecule inhibiting protein kinase C: first clinical results in renal-transplant recipients. 2010 Am. J. Transplant. pmid:20121745
Al-Massarani G et al. Impact of immunosuppressive treatment on endothelial biomarkers after kidney transplantation. 2008 Am. J. Transplant. pmid:18925903
MacPhee IA et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. 2004 Am. J. Transplant. pmid:15147425
Artz MA et al. Conversion from cyclosporine to tacrolimus improves quality-of-life indices, renal graft function and cardiovascular risk profile. 2004 Am. J. Transplant. pmid:15147428
Hesselink DA et al. Cyclosporine interacts with mycophenolic acid by inhibiting the multidrug resistance-associated protein 2. 2005 Am. J. Transplant. pmid:15816878
Byrne GW et al. Warfarin or low-molecular-weight heparin therapy does not prolong pig-to-primate cardiac xenograft function. 2005 Am. J. Transplant. pmid:15816881
Lucey MR et al. A comparison of tacrolimus and cyclosporine in liver transplantation: effects on renal function and cardiovascular risk status. 2005 Am. J. Transplant. pmid:15816894
Pillebout E et al. Renal histopathological lesions after orthotopic liver transplantation (OLT). 2005 Am. J. Transplant. pmid:15816895
Schold JD The burden of proof in the design of early phase clinical trials. 2013 Am. J. Transplant. pmid:23802723
Chisholm-Burns MA et al. Improving outcomes of renal transplant recipients with behavioral adherence contracts: a randomized controlled trial. 2013 Am. J. Transplant. pmid:23819827
Muthusamy AS et al. Alemtuzumab induction and steroid-free maintenance immunosuppression in pancreas transplantation. 2008 Am. J. Transplant. pmid:18828772
Van Laecke S et al. Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. 2009 Am. J. Transplant. pmid:19624560
Srinivas TR et al. The noninferiority trial: don't don't do it. 2010 Am. J. Transplant. pmid:21087412
Shergill AK et al. Applicability, tolerability and efficacy of preemptive antiviral therapy in hepatitis C-infected patients undergoing liver transplantation. 2005 Am. J. Transplant. pmid:15636619
Tydén G et al. ABO incompatible kidney transplantations without splenectomy, using antigen-specific immunoadsorption and rituximab. 2005 Am. J. Transplant. pmid:15636623
Woodle ES et al. A multicenter pilot study of early (4-day) steroid cessation in renal transplant recipients under simulect, tacrolimus and sirolimus. 2005 Am. J. Transplant. pmid:15636625
Mian AN et al. Mycoplasma hominis septic arthritis in a pediatric renal transplant recipient: case report and review of the literature. 2005 Am. J. Transplant. pmid:15636628
Gregoor PS and Weimar W Tacrolimus and pure red-cell aplasia. 2005 Am. J. Transplant. pmid:15636632
Rodríguez-Perálvarez M et al. Tacrolimus exposure after liver transplantation in randomized controlled trials: too much for too long. 2013 Am. J. Transplant. pmid:23621166
Vanhove T et al. Determinants of the Magnitude of Interaction Between Tacrolimus and Voriconazole/Posaconazole in Solid Organ Recipients. 2017 Am. J. Transplant. pmid:28224698
Pondrom S The AJT report. 2008 Am. J. Transplant. pmid:18324976
Shihab F et al. Association of Clinical Events With Everolimus Exposure in Kidney Transplant Patients Receiving Low Doses of Tacrolimus. 2017 Am. J. Transplant. pmid:28141897
O'Connell PJ et al. Multicenter Australian trial of islet transplantation: improving accessibility and outcomes. 2013 Am. J. Transplant. pmid:23668890
Russ GR et al. Efficacy of sotrastaurin plus tacrolimus after de novo kidney transplantation: randomized, phase II trial results. 2013 Am. J. Transplant. pmid:23668931
Rodríguez-Perálvarez M et al. Tacrolimus trough levels, rejection and renal impairment in liver transplantation: a systematic review and meta-analysis. 2012 Am. J. Transplant. pmid:22703529
Luan FL et al. Comparative risk of impaired glucose metabolism associated with cyclosporine versus tacrolimus in the late posttransplant period. 2008 Am. J. Transplant. pmid:18786231
Chen G et al. Anti-CD45RB monoclonal antibody prolongs renal allograft survival in cynomolgus monkeys. 2007 Am. J. Transplant. pmid:17227555
Servais A et al. Interstitial fibrosis evolution on early sequential screening renal allograft biopsies using quantitative image analysis. 2011 Am. J. Transplant. pmid:21672152
Senior PA et al. Changes in renal function after clinical islet transplantation: four-year observational study. 2007 Am. J. Transplant. pmid:17227560
Levi Z et al. Switching from tacrolimus to sirolimus halts the appearance of new sebaceous neoplasms in Muir-Torre syndrome. 2007 Am. J. Transplant. pmid:17229076
Ogawa T et al. Rho-associated kinase inhibitor reduces tumor recurrence after liver transplantation in a rat hepatoma model. 2007 Am. J. Transplant. pmid:17229077
Miriuka SG et al. mTOR inhibition induces endothelial progenitor cell death. 2006 Am. J. Transplant. pmid:16796720
Ryan CM and Swanson DP clinical research, innovative practice and IRB review: identifying and respecting boundaries. 2007 Am. J. Transplant. pmid:17331113
Nijhoff MF et al. Glycemic Stability Through Islet-After-Kidney Transplantation Using an Alemtuzumab-Based Induction Regimen and Long-Term Triple-Maintenance Immunosuppression. 2016 Am. J. Transplant. pmid:26288226
Triñanes J et al. Deciphering Tacrolimus-Induced Toxicity in Pancreatic β Cells. 2017 Am. J. Transplant. pmid:28432716
Pallet N et al. Long-Term Clinical Impact of Adaptation of Initial Tacrolimus Dosing to CYP3A5 Genotype. 2016 Am. J. Transplant. pmid:26990694
Miller LW Cardiovascular toxicities of immunosuppressive agents. 2002 Am. J. Transplant. pmid:12392286