tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Drug Hypersensitivity D004342 20 associated lipids
HIV Infections D015658 20 associated lipids
Ataxia D001259 20 associated lipids
Gastrointestinal Diseases D005767 20 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Brain Edema D001929 20 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Bacterial Infections D001424 21 associated lipids
Anemia D000740 21 associated lipids
Vomiting D014839 21 associated lipids
Hyperglycemia D006943 21 associated lipids
Erythema D004890 22 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Hypersensitivity D006967 22 associated lipids
Leukemia, T-Cell D015458 23 associated lipids
Cholestasis D002779 23 associated lipids
Neoplasm Invasiveness D009361 23 associated lipids
Fibrosis D005355 23 associated lipids
Cystitis D003556 23 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Lymphoma, B-Cell D016393 24 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Genetic Predisposition to Disease D020022 24 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Ascites D001201 25 associated lipids
Leukemia-Lymphoma, Adult T-Cell D015459 25 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Brain Diseases D001927 27 associated lipids
Endotoxemia D019446 27 associated lipids
Ventricular Remodeling D020257 28 associated lipids
Obesity D009765 29 associated lipids
Kidney Diseases D007674 29 associated lipids
Catalepsy D002375 30 associated lipids
Dermatitis D003872 30 associated lipids
Drug Eruptions D003875 30 associated lipids
Proteinuria D011507 30 associated lipids
Cardiomegaly D006332 31 associated lipids
Liver Diseases D008107 31 associated lipids
Diarrhea D003967 32 associated lipids
Neurodegenerative Diseases D019636 32 associated lipids
Stroke D020521 32 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Uremia D014511 33 associated lipids
Memory Disorders D008569 33 associated lipids
Burns D002056 34 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Schmidt LE et al. Relationship between postoperative erythromycin breath test and early morbidity in liver transplant recipients. 2003 Transplantation pmid:12883193
Troppmann C et al. Higher surgical wound complication rates with sirolimus immunosuppression after kidney transplantation: a matched-pair pilot study. 2003 Transplantation pmid:12883205
McCune TR et al. Effects of tacrolimus on hyperlipidemia after successful renal transplantation: a Southeastern Organ Procurement Foundation multicenter clinical study. 1998 Transplantation pmid:9448150
Mentzer RM et al. Tacrolimus as a rescue immunosuppressant after heart and lung transplantation. The U.S. Multicenter FK506 Study Group. 1998 Transplantation pmid:9448154
Ernst A et al. Lung abcess complicating Legionella micdadei pneumonia in an adult liver transplant recipient: case report and review. 1998 Transplantation pmid:9448158
Cavaillé-Coll MW and Elashoff MR Commentary on a comparison of tacrolimus and cyclosporine for immunosuppression after cadaveric renal transplantation. 1998 Transplantation pmid:9448161
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
First MR Transplantation in the nineties. 1992 Transplantation pmid:1370734
Ellis D et al. Epstein-Barr virus-related disorders in children undergoing renal transplantation with tacrolimus-based immunosuppression. 1999 Transplantation pmid:10532541
Méndez A et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. 2014 Transplantation pmid:24492423
Moss MC et al. Lithium use for bipolar disorder post renal transplant: is mood stabilization without toxicity possible? 2014 Transplantation pmid:24492429
Eason JD et al. Steroid-free liver transplantation using rabbit antithymocyte globulin and early tacrolimus monotherapy. 2003 Transplantation pmid:12717237
Fridell JA et al. Steroid withdrawal for pancreas after kidney transplantation in recipients on maintenance prednisone immunosuppression. 2006 Transplantation pmid:16906038
Boldt A et al. The influence of immunosuppressive drugs on T- and B-cell apoptosis via p53-mediated pathway in vitro and in vivo. 2006 Transplantation pmid:16906043
Narayanan M et al. Outcomes in African American kidney transplant patients receiving tacrolimus and mycophenolic acid immunosuppression. 2013 Transplantation pmid:23423268
Reutzel-Selke A et al. Short-term immunosuppressive treatment of the donor ameliorates consequences of ischemia/ reperfusion injury and long-term graft function in renal allografts from older donors. 2003 Transplantation pmid:12811235
Gaber AO et al. Acute rejection characteristics from a prospective, randomized, double-blind, placebo-controlled multicenter trial of early corticosteroid withdrawal. 2013 Transplantation pmid:23423269
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
Drachenberg CB et al. Islet cell damage associated with tacrolimus and cyclosporine: morphological features in pancreas allograft biopsies and clinical correlation. 1999 Transplantation pmid:10459544
Trancassini M et al. Microbiologic investigation on patients with cystic fibrosis subjected to bilateral lung transplantation. 2001 Transplantation pmid:11707748
Waldman WJ et al. Inhibition of angiogenesis-related endothelial activity by the experimental immunosuppressive agent leflunomide. 2001 Transplantation pmid:11707749
Jain A et al. Delayed introduction of tacrolimus postliver transplant with intravenous mycophenolate mofetil preserves renal function without incurring rejection. 2014 Transplantation pmid:25285953
Vu MD et al. Tacrolimus (FK506) and sirolimus (rapamycin) in combination are not antagonistic but produce extended graft survival in cardiac transplantation in the rat. 1997 Transplantation pmid:9422432
Ferraris JR et al. Conversion from cyclosporine A to tacrolimus in pediatric kidney transplant recipients with chronic rejection: changes in the immune responses. 2004 Transplantation pmid:15084930
Shapiro R et al. Posttransplant lymphoproliferative disorders in adult and pediatric renal transplant patients receiving tacrolimus-based immunosuppression. 1999 Transplantation pmid:10628763
Velidedeoglu E et al. Early kidney dysfunction post liver transplantation predicts late chronic kidney disease. 2004 Transplantation pmid:15084934
Andrés A et al. A randomized trial comparing renal function in older kidney transplant patients following delayed versus immediate tacrolimus administration. 2009 Transplantation pmid:19898206
Selzner N et al. Conversion from cyclosporine to FK506 in adult liver transplant recipients: a combined North American and European experience. 2001 Transplantation pmid:11579301
Savoldo B et al. Generation of autologous Epstein-Barr virus-specific cytotoxic T cells for adoptive immunotherapy in solid organ transplant recipients. 2001 Transplantation pmid:11579304
Ericzon BG et al. The effect of FK506 treatment on pancreaticoduodenal allotransplantation in the primate. 1992 Transplantation pmid:1376501
Jain A et al. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone and mycophenolate mofetil in primary adult liver transplantation: a single center report. 2001 Transplantation pmid:11579306
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Sheiner PA et al. Increased risk of early rejection correlates with recovery of CD3 cell count after liver transplant in patients receiving OKT3 induction. 1997 Transplantation pmid:9355846
Newell KA et al. Treatment with either anti-CD4 or anti-CD8 monoclonal antibodies blocks alphabeta T cell-mediated rejection of intestinal allografts in mice. 1997 Transplantation pmid:9381541
Iyengar AR et al. Striking augmentation of hematopoietic cell chimerism in noncytoablated allogeneic bone marrow recipients by FLT3 ligand and tacrolimus. 1997 Transplantation pmid:9158008
van Hooff JP Pneumocystis carinii pneumonia after renal transplantation. 1997 Transplantation pmid:9158038
Hsiau M et al. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. 2011 Transplantation pmid:21857278
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Kitayama T et al. Facilitation of tacrolimus-induced heart-allograft acceptability by pretransplant host treatment with granulocyte colony-stimulating factor: interleukin-12-restricted suppression of intragraft monokine mRNA expression. 2003 Transplantation pmid:12605126
Egidi MF and Gaber AO Outcomes of African-American kidney-transplant recipients treated with sirolimus, tacrolimus, and corticosteroids. 2003 Transplantation pmid:12605133
Xu X et al. FKBP12 is the only FK506 binding protein mediating T-cell inhibition by the immunosuppressant FK506. 2002 Transplantation pmid:12085010
Mueller AR et al. Neurotoxicity after orthotopic liver transplantation. A comparison between cyclosporine and FK506. 1994 Transplantation pmid:7518974
Platz KP et al. Nephrotoxicity following orthotopic liver transplantation. A comparison between cyclosporine and FK506. 1994 Transplantation pmid:7518975
Takaya S et al. Liver transplantation in positive cytotoxic crossmatch cases using FK506, high-dose steroids, and prostaglandin E1. 1992 Transplantation pmid:1279851
Wasik M et al. Effect of FK506 versus cyclosporine on human natural and antibody-dependent cytotoxicity reactions in vitro. 1991 Transplantation pmid:1702910
Carroll PB et al. Effect of the immunosuppressant FK506 on glucose-induced insulin secretion from adult rat islets of Langerhans. 1991 Transplantation pmid:1702911
Starzl TE et al. Hepatotrophic effects of FK506 in dogs. 1991 Transplantation pmid:1702912
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Yu S et al. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. 2006 Transplantation pmid:16421475
Jurcevic S et al. A new enzyme-linked immunosorbent assay to measure anti-endothelial antibodies after cardiac transplantation demonstrates greater inhibition of antibody formation by tacrolimus compared with cyclosporine. 1998 Transplantation pmid:9603168
Borrows R et al. Five years of steroid sparing in renal transplantation with tacrolimus and mycophenolate mofetil. 2006 Transplantation pmid:16421488
Macphee IA et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. 2002 Transplantation pmid:12490779
Shapiro AM et al. Defining optimal immunosuppression for islet transplantation based on reduced diabetogenicity in canine islet autografts. 2002 Transplantation pmid:12490784
Luan FL et al. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. 2011 Transplantation pmid:21242885
Pérgola PE et al. Kidney transplantation during the first trimester of pregnancy: immunosuppression with mycophenolate mofetil, tacrolimus, and prednisone. 2001 Transplantation pmid:11349738
Yoshimura N et al. Effect of a new immunosuppressive agent, FK506, on human lymphocyte responses in vitro. II. Inhibition of the production of IL-2 and gamma-IFN, but not B cell-stimulating factor 2. 1989 Transplantation pmid:2465593
Ho ET et al. Once-daily extended-release versus twice-daily standard-release tacrolimus in kidney transplant recipients: a systematic review. 2013 Transplantation pmid:23542469
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Porrini E et al. Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. 2008 Transplantation pmid:18431233
Veroux M et al. Impact of conversion to a once daily tacrolimus-based regimen in kidney transplant recipients with gastrointestinal complications. 2012 Transplantation pmid:22298033
Naesens M et al. Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. 2008 Transplantation pmid:18431234
Homma M et al. Effects of lansoprazole and rabeprazole on tacrolimus blood concentration: case of a renal transplant recipient with CYP2C19 gene mutation. 2002 Transplantation pmid:11821750
Meier M et al. Slowing the progression of chronic allograft nephropathy by conversion from cyclosporine to tacrolimus: a randomized controlled trial. 2006 Transplantation pmid:16612281
Iwata H et al. Suppression of allograft responses by combining donor alloantigen-specific intravenous presensitization with suboptimal doses of FK506. 1993 Transplantation pmid:7687396
Roelen DL et al. Differential inhibition of primed alloreactive CTLs in vitro by clinically used concentrations of cyclosporine and FK506. 1993 Transplantation pmid:7687397
Shapiro R et al. "Suboptimal" kidney donors: the experience with tacrolimus-based immunosuppression. 1996 Transplantation pmid:8932264
Devlin J and Williams R Transplantation for fulminant hepatic failure: comparing tacrolimus versus cyclosporine for immunosuppression and the outcome in elective transplants. European FK506 Liver Study Group. 1996 Transplantation pmid:8932266
Curran CF et al. Acute overdoses of tacrolimus. 1996 Transplantation pmid:8932293
Fisher NC et al. The clinical impact of nephrotoxicity in liver transplantation. 2000 Transplantation pmid:10910259
Brunet M et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. 2006 Transplantation pmid:16495801
MacDonald AS Management strategies for nephrotoxicity. 2000 Transplantation pmid:10910262
Kessler L et al. Tacrolimus-associated optic neuropathy after pancreatic islet transplantation using a sirolimus/tacrolimus immunosuppressive regimen. 2006 Transplantation pmid:16495816
Chen H et al. Compromised kidney graft rejection response in Vervet monkeys after withdrawal of immunosuppressants tacrolimus and sirolimus. 2000 Transplantation pmid:10836361
Moffatt SD and Metcalfe SM Comparison between tacrolimus and cyclosporine as immunosuppressive agents compatible with tolerance induction by CD4/CD8 blockade. 2000 Transplantation pmid:10836388
Higgins RM et al. Conversion from tacrolimus to cyclosporine in stable renal transplant patients: safety, metabolic changes, and pharmacokinetic comparison. 2000 Transplantation pmid:10836393
Meiser BM The best dosing for initial tacrolimus application is trough level adapted! 2005 Transplantation pmid:15714162
Podesser BK et al. Comparison of low and high initial tacrolimus dosing in primary heart transplant recipients: a prospective European multicenter study. 2005 Transplantation pmid:15714171
Garton T Nefazodone and cyp450 3a4 interactions with cyclosporine and tacrolimus1. 2002 Transplantation pmid:12352898
Cantarovich D et al. Switching from cyclosporine to tacrolimus in patients with chronic transplant dysfunction or cyclosporine-induced adverse events. 2005 Transplantation pmid:15714172
Yamauchi A et al. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. 2002 Transplantation pmid:12352921
Hougardy JM et al. Conversion from Prograf to Advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. 2011 Transplantation pmid:21192316
Ochiai T et al. Studies of the effects of FK506 on renal allografting in the beagle dog. 1987 Transplantation pmid:2447688
Ochiai T et al. Studies of the induction and maintenance of long-term graft acceptance by treatment with FK506 in heterotopic cardiac allotransplantation in rats. 1987 Transplantation pmid:2447689
Inamura N et al. Prolongation of skin allograft survival in rats by a novel immunosuppressive agent, FK506. 1988 Transplantation pmid:2447690
Paterson DL et al. Infectious complications occurring in liver transplant recipients receiving mycophenolate mofetil. 1998 Transplantation pmid:9753337
Woodle ES et al. Liver transplantation in the first three months of life. 1998 Transplantation pmid:9753340
Radkowski M et al. Detection of hepatitis C virus replication in peripheral blood mononuclear cells after orthotopic liver transplantation. 1998 Transplantation pmid:9753352
Bayés B et al. Adiponectin and risk of new-onset diabetes mellitus after kidney transplantation. 2004 Transplantation pmid:15257035
Miao G et al. Development of donor-specific immunoregulatory T-cells after local CTLA4Ig gene transfer to pancreatic allograft. 2004 Transplantation pmid:15257039
Peng Y et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. 2013 Transplantation pmid:23263506
Ko S et al. The pharmacokinetic benefits of newly developed liposome-incorporated FK506. 1994 Transplantation pmid:7526494
Chavin KD et al. Anti-CD2 monoclonal antibodies synergize with FK506 but not with cyclosporine or rapamycin to induce tolerance. 1994 Transplantation pmid:7511258
Günther M et al. Rapid decline of antibodies after hepatitis A immunization in liver and renal transplant recipients. 2001 Transplantation pmid:11233913
Ricordi C et al. In vivo effect of FK506 on human pancreatic islets. 1991 Transplantation pmid:1716797
Katz IA et al. Comparison of the effects of FK506 and cyclosporine on bone mineral metabolism in the rat. A pilot study. 1991 Transplantation pmid:1716801
Inomata Y et al. The evolution of immunosuppression with FK506 in pediatric living-related liver transplantation. 1996 Transplantation pmid:8600632
Rezeig MA et al. Kaposi's sarcoma in liver transplant recipients on FK506: two case reports. 1997 Transplantation pmid:9175820
Hricik DE et al. Withdrawal of steroid therapy in African American kidney transplant recipients receiving sirolimus and tacrolimus. 2003 Transplantation pmid:14508357
Foster RD et al. Long-term acceptance of composite tissue allografts through mixed chimerism and CD28 blockade. 2003 Transplantation pmid:14508367
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177