tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Body Weight D001835 333 associated lipids
Lung Neoplasms D008175 171 associated lipids
Adenocarcinoma D000230 166 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Edema D004487 152 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Inflammation D007249 119 associated lipids
Hypertension D006973 115 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Nakahara T et al. Mechanistic insights into topical tacrolimus for the treatment of atopic dermatitis. 2018 Pediatr Allergy Immunol pmid:29205511
Choi CB et al. Outcomes of multitarget therapy using mycophenolate mofetil and tacrolimus for refractory or relapsing lupus nephritis. 2018 Lupus pmid:29448881
Charlton M et al. Everolimus Is Associated With Less Weight Gain Than Tacrolimus 2 Years After Liver Transplantation: Results of a Randomized Multicenter Study. 2017 Transplantation pmid:28817434
Ghaffari R et al. Tacrolimus Eye Drops as Adjunct Therapy in Severe Corneal Endothelial Rejection Refractory to Corticosteroids. 2017 Cornea pmid:28817391
Kumai Y et al. Reversible Cerebral Vasoconstriction Syndrome After Heart Transplantation: A Case Report. 2017 Transplant. Proc. pmid:29198694
Savić V et al. Tacrolimus loaded biocompatible lecithin-based microemulsions with improved skin penetration: Structure characterization and in vitro/in vivo performances. 2017 Int J Pharm pmid:28711641
Groll AH et al. Pharmacokinetic Assessment of Drug-Drug Interactions of Isavuconazole With the Immunosuppressants Cyclosporine, Mycophenolic Acid, Prednisolone, Sirolimus, and Tacrolimus in Healthy Adults. 2017 Clin Pharmacol Drug Dev pmid:27273343
Benítez C et al. Letter: sublingual dosing of tacrolimus in transplant patients-interesting concept to overcome first pass effects. Authors' reply. 2017 Aliment. Pharmacol. Ther. pmid:28589580
Justice JA et al. Disruption of K2.1 somato-dendritic clusters prevents the apoptogenic increase of potassium currents. 2017 Neuroscience pmid:28461216
Lu XF et al. Use of a semi-physiological pharmacokinetic model to investigate the influence of itraconazole on tacrolimus absorption, distribution and metabolism in mice. 2017 Xenobiotica pmid:27533047
Kodama S et al. Tacrolimus-Induced Reversible Cerebral Vasoconstriction Syndrome with Delayed Multi-Segmental Vasoconstriction. 2017 J Stroke Cerebrovasc Dis pmid:28342655
Lichtenberg S et al. The incidence of post-transplant cancer among kidney transplant recipients is associated with the level of tacrolimus exposure during the first year after transplantation. 2017 Eur. J. Clin. Pharmacol. pmid:28342067
Salgüero Fernández I et al. Rapidly progressive infiltrated plaques in a transplant recipient. 2017 Actas Dermosifiliogr pmid:27677210
Stojanovic J et al. Immune Desensitization Allows Pediatric Blood Group Incompatible Kidney Transplantation. 2017 Transplantation pmid:27463537
Basu B et al. Long-term efficacy and safety of common steroid-sparing agents in idiopathic nephrotic children. 2017 Clin. Exp. Nephrol. pmid:27108294
Grant CR et al. Immunosuppressive drugs affect interferon (IFN)-γ and programmed cell death 1 (PD-1) kinetics in patients with newly diagnosed autoimmune hepatitis. 2017 Clin. Exp. Immunol. pmid:28257599
Wang J et al. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus. 2017 Microb. Cell Fact. pmid:28974216
Ordóñez-Robles M et al. Analysis of the Pho regulon in Streptomyces tsukubaensis. 2017 Microbiol. Res. pmid:28942849
Cohen JB et al. Belatacept Compared With Tacrolimus for Kidney Transplantation: A Propensity Score Matched Cohort Study. 2017 Transplantation pmid:27941427
Baas M et al. Unique clinical conditions associated with different acinar regions of fibrosis in long-term surviving pediatric liver grafts. 2017 Pediatr Transplant pmid:28627016