tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Multiple Endocrine Neoplasia Type 2a D018813 1 associated lipids
Apraxias D001072 1 associated lipids
Hypertensive Encephalopathy D020343 1 associated lipids
Hearing Loss, Bilateral D006312 1 associated lipids
Nocturia D053158 1 associated lipids
Echinostomiasis D004451 1 associated lipids
Intestinal Fistula D007412 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Nephritis, Hereditary D009394 1 associated lipids
Mastocytosis, Cutaneous D034701 1 associated lipids
Pancreatitis, Graft D055589 1 associated lipids
Hearing Loss, Sudden D003639 1 associated lipids
Rectal Diseases D012002 1 associated lipids
Citrullinemia D020159 1 associated lipids
Pulmonary Veno-Occlusive Disease D011668 1 associated lipids
Sweet Syndrome D016463 1 associated lipids
Optic Neuritis D009902 1 associated lipids
Granuloma Annulare D016460 1 associated lipids
Paraneoplastic Syndromes, Nervous System D020361 1 associated lipids
Facial Nerve Injuries D020220 1 associated lipids
Intertrigo D007402 1 associated lipids
Miller Fisher Syndrome D019846 1 associated lipids
Cholangitis, Sclerosing D015209 1 associated lipids
Hepatic Insufficiency D048550 1 associated lipids
Lung Abscess D008169 1 associated lipids
Central Nervous System Viral Diseases D020805 1 associated lipids
Mite Infestations D008924 1 associated lipids
Polyendocrinopathies, Autoimmune D016884 1 associated lipids
Leukoplakia D007971 1 associated lipids
Fasciitis, Necrotizing D019115 1 associated lipids
Mediastinal Emphysema D008478 1 associated lipids
Angiolymphoid Hyperplasia with Eosinophilia D000796 1 associated lipids
Eye Infections, Viral D015828 1 associated lipids
Dysplastic Nevus Syndrome D004416 1 associated lipids
Hypoplastic Left Heart Syndrome D018636 1 associated lipids
Lymphocele D008210 1 associated lipids
Colitis, Collagenous D046729 1 associated lipids
Malacoplakia D008287 1 associated lipids
Myoclonic Cerebellar Dyssynergia D002527 1 associated lipids
Lichen Nitidus D017513 1 associated lipids
Lichenoid Eruptions D017512 1 associated lipids
Feline Infectious Peritonitis D016766 1 associated lipids
Meningitis, Cryptococcal D016919 1 associated lipids
Oculomotor Nerve Diseases D015840 1 associated lipids
Cutis Laxa D003483 1 associated lipids
Invasive Pulmonary Aspergillosis D055744 1 associated lipids
Intestinal Volvulus D045822 1 associated lipids
Hand Injuries D006230 1 associated lipids
Beckwith-Wiedemann Syndrome D001506 1 associated lipids
Eye Diseases, Hereditary D015785 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Chen ZS et al. Early steroid withdrawal after liver transplantation for hepatocellular carcinoma. 2007 World J. Gastroenterol. pmid:17876900
Song JL et al. Minimizing tacrolimus decreases the risk of new-onset diabetes mellitus after liver transplantation. 2016 World J. Gastroenterol. pmid:26877618
Provenzani A et al. Pharmacogenetic considerations for optimizing tacrolimus dosing in liver and kidney transplant patients. 2013 World J. Gastroenterol. pmid:24409044
Liu F et al. Tacrolimus dosage requirements in living donor liver transplant recipients with small-for-size grafts. 2009 World J. Gastroenterol. pmid:19701975
Jia JJ et al. ''Minimizing tacrolimus'' strategy and long-term survival after liver transplantation. 2014 World J. Gastroenterol. pmid:25170223
Kawakami K et al. Effects of oral tacrolimus as a rapid induction therapy in ulcerative colitis. 2015 World J. Gastroenterol. pmid:25684955
Buchholz BM et al. Role of colectomy in preventing recurrent primary sclerosing cholangitis in liver transplant recipients. 2018 World J. Gastroenterol. pmid:30065563
Kiyama T et al. Tacrolimus enhances colon anastomotic healing in rats. 2002 Sep-Oct Wound Repair Regen pmid:12406167
Gupta AS et al. Pyoderma Gangrenosum of the Scalp: A Rare Clinical Variant. 2018 Wounds pmid:29481333
Zhou YN et al. Effect of amlodipine on the pharmacokinetics of tacrolimus in rats. 2013 Xenobiotica pmid:23312000
Picard N The pharmacokinetic interaction between mycophenolic acid and cyclosporine revisited: a commentary on "Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus". 2013 Xenobiotica pmid:23339626
Tata PN et al. Species-dependent hepatic metabolism of immunosuppressive agent tacrolimus (FK-506). 2009 Xenobiotica pmid:19604035
Zhang S et al. Effect of voriconazole and other azole antifungal agents on CYP3A activity and metabolism of tacrolimus in human liver microsomes. 2012 Xenobiotica pmid:22106961
Ogawa K et al. A new approach to predicting human hepatic clearance of CYP3A4 substrates using monkey pharmacokinetic data. 2013 Xenobiotica pmid:23153054
Lu XF et al. Use of a semi-physiological pharmacokinetic model to investigate the influence of itraconazole on tacrolimus absorption, distribution and metabolism in mice. 2017 Xenobiotica pmid:27533047
Zhu L et al. Effects of CYP3A5 genotypes, ABCB1 C3435T and G2677T/A polymorphism on pharmacokinetics of Tacrolimus in Chinese adult liver transplant patients. 2015 Xenobiotica pmid:25869250
Lampen A et al. Catalytic activities, protein- and mRNA-expression of cytochrome P450 isoenzymes in intestinal cell lines. 1998 Xenobiotica pmid:9622846
Patel CG et al. Mycophenolic acid glucuronide is transported by multidrug resistance-associated protein 2 and this transport is not inhibited by cyclosporine, tacrolimus or sirolimus. 2013 Xenobiotica pmid:22934787
Miura M et al. Comparison of enantioselective disposition of rabeprazole versus lansoprazole in renal-transplant recipients who are CYP2C19 extensive metabolizers. 2005 Xenobiotica pmid:16012079
Niioka T et al. Effects of CYP3A5 polymorphism and the tacrolimus 12 h concentration on tacrolimus-induced acute renal dysfunction in patients with lupus nephritis. 2015 Xenobiotica pmid:26189776