tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Abnormalities, Multiple D000015 13 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Acne Vulgaris D000152 35 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adrenal Insufficiency D000309 3 associated lipids
Akinetic Mutism D000405 1 associated lipids
Albuminuria D000419 18 associated lipids
Alopecia D000505 14 associated lipids
Alopecia Areata D000506 6 associated lipids
Alzheimer Disease D000544 76 associated lipids
Amenorrhea D000568 4 associated lipids
Amputation, Traumatic D000673 2 associated lipids
Anemia D000740 21 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Anemia, Hemolytic D000743 4 associated lipids
Anemia, Hemolytic, Autoimmune D000744 5 associated lipids
Anemia, Refractory D000753 3 associated lipids
Anemia, Refractory, with Excess of Blasts D000754 2 associated lipids
Aneurysm, Dissecting D000784 2 associated lipids
Angiolymphoid Hyperplasia with Eosinophilia D000796 1 associated lipids
Angioedema D000799 6 associated lipids
Anus Diseases D001004 3 associated lipids
Apraxias D001072 1 associated lipids
Arm Injuries D001134 1 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Ascites D001201 25 associated lipids
Ataxia D001259 20 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Bacterial Infections D001424 21 associated lipids
Balanitis D001446 4 associated lipids
Beckwith-Wiedemann Syndrome D001506 1 associated lipids
Behcet Syndrome D001528 7 associated lipids
Biliary Fistula D001658 13 associated lipids
Biliary Tract Neoplasms D001661 7 associated lipids
Blepharitis D001762 4 associated lipids
Blindness D001766 6 associated lipids
Body Weight D001835 333 associated lipids
Bone Diseases D001847 4 associated lipids
Bradycardia D001919 13 associated lipids
Brain Diseases D001927 27 associated lipids
Brain Edema D001929 20 associated lipids
Bronchiolitis D001988 6 associated lipids
Bronchiolitis Obliterans D001989 8 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Therapondos G et al. Cardiac hypertrophy in liver transplant recipients: tacrolimus, cyclosporine or both? 2003 Transplantation pmid:12883220
Ogunseinde BA et al. A case of tacrolimus (FK506)-induced pancreatitis and fatality 2 years postcadaveric renal transplant. 2003 Transplantation pmid:12883222
Keenan RJ et al. Immunosuppressive properties of thalidomide. Inhibition of in vitro lymphocyte proliferation alone and in combination with cyclosporine or FK506. 1991 Transplantation pmid:1719668
Vathsala A et al. Analysis of the interactions of immunosuppressive drugs with cyclosporine in inhibiting DNA proliferation. 1990 Transplantation pmid:1689520
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
Migita K et al. FK506 markedly enhances apoptosis of antigen-stimulated peripheral T cells by down-regulation of Bcl-xL. 1999 Transplantation pmid:10532544
Leroy-Matheron C et al. Inhibitor against coagulation factor V after liver transplantation. 1999 Transplantation pmid:10532550
Méndez A et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. 2014 Transplantation pmid:24492423
Moss MC et al. Lithium use for bipolar disorder post renal transplant: is mood stabilization without toxicity possible? 2014 Transplantation pmid:24492429
Koneru B et al. Blood transfusions in liver recipients: a conundrum or a clear benefit in the cyclosporine/tacrolimus era? 1997 Transplantation pmid:9197350
Boleslawski E et al. Defective inhibition of peripheral CD8+ T cell IL-2 production by anti-calcineurin drugs during acute liver allograft rejection. 2004 Transplantation pmid:15223897
Wozniak LJ et al. Donor-specific HLA Antibodies Are Associated With Late Allograft Dysfunction After Pediatric Liver Transplantation. 2015 Transplantation pmid:26038872
Fridell JA et al. Steroid withdrawal for pancreas after kidney transplantation in recipients on maintenance prednisone immunosuppression. 2006 Transplantation pmid:16906038
Hostettler KE et al. Cyclosporine A mediates fibroproliferation through epithelial cells. 2004 Transplantation pmid:15223908
Boldt A et al. The influence of immunosuppressive drugs on T- and B-cell apoptosis via p53-mediated pathway in vitro and in vivo. 2006 Transplantation pmid:16906043
Yang CW et al. Preconditioning with cyclosporine A or FK506 differentially regulates mitogen-activated protein kinase expression in rat kidneys with ischemia/reperfusion injury. 2003 Transplantation pmid:12544865
Lykavieris P et al. Angioedema in pediatric liver transplant recipients under tacrolimus immunosuppression. 2003 Transplantation pmid:12544888
Narayanan M et al. Outcomes in African American kidney transplant patients receiving tacrolimus and mycophenolic acid immunosuppression. 2013 Transplantation pmid:23423268
Lawsin L and Light JA Severe acute renal failure after exposure to sirolimus-tacrolimus in two living donor kidney recipients. 2003 Transplantation pmid:12544890
Gaber AO et al. Acute rejection characteristics from a prospective, randomized, double-blind, placebo-controlled multicenter trial of early corticosteroid withdrawal. 2013 Transplantation pmid:23423269
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
Guethoff S et al. Ten-year results of a randomized trial comparing tacrolimus versus cyclosporine a in combination with mycophenolate mofetil after heart transplantation. 2013 Transplantation pmid:23423270
Miyakoshi S et al. Tacrolimus as prophylaxis for acute graft-versus-host disease in reduced intensity cord blood transplantation for adult patients with advanced hematologic diseases. 2007 Transplantation pmid:17700155
Huang E et al. Alemtuzumab induction in deceased donor kidney transplantation. 2007 Transplantation pmid:17984833
Jain A et al. Delayed introduction of tacrolimus postliver transplant with intravenous mycophenolate mofetil preserves renal function without incurring rejection. 2014 Transplantation pmid:25285953
Kiuchi T et al. A hepatic graft tuberculosis transmitted from a living-related donor. 1997 Transplantation pmid:9089234
Jeske HC et al. Gemcitabine with cyclosporine or with tacrolimus exerts a synergistic effect and induces tolerance in the rat. 2003 Transplantation pmid:14557751
Loucaidou M et al. Five-year results of kidney transplantation under tacrolimus-based regimes: the persisting significance of vascular rejection. 2003 Transplantation pmid:14557763
Toso C et al. Insulin independence after conversion to tacrolimus and sirolimus-based immunosuppression in islet-kidney recipients. 2003 Transplantation pmid:14557767
King-Biggs MB et al. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. 2003 Transplantation pmid:12792493
Vu MD et al. Combination therapy of malononitrilamide FK778 with tacrolimus on cell proliferation assays and in rats receiving renal allografts. 2003 Transplantation pmid:12792496
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Barth RN et al. Prolonged survival of composite facial allografts in non-human primates associated with posttransplant lymphoproliferative disorder. 2009 Transplantation pmid:19996923
Karlsson H and Nässberger L FK506 suppresses the mitogen-induced increase in lymphocyte adhesiveness to endothelial cells, but does not affect endothelial cell activation in response to inflammatory stimuli. 1997 Transplantation pmid:9355847
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Thervet E et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. 2003 Transplantation pmid:14578760
McDiarmid SV et al. A comparison of renal function in cyclosporine- and FK-506-treated patients after primary orthotopic liver transplantation. 1993 Transplantation pmid:7692636
Tabasco-Minguillan J et al. Insulin requirements after liver transplantation and FK-506 immunosuppression. 1993 Transplantation pmid:7692637
Tanabe M et al. Combined immunosuppressive therapy with low dose FK506 and antimetabolites in rat allogeneic heart transplantation. 1994 Transplantation pmid:7518619
Jain A et al. Comparative long-term evaluation of tacrolimus and cyclosporine in pediatric liver transplantation. 2000 Transplantation pmid:10972220
Wang SC et al. A dual mechanism of immunosuppression by FK-506. Differential suppression of IL-4 and IL-10 levels in T helper 2 cells. 1993 Transplantation pmid:7692640
Khanna AK Mechanism of the combination immunosuppressive effects of rapamycin with either cyclosporine or tacrolimus. 2000 Transplantation pmid:10972232
Königsrainer A et al. Nonocclusive segmental mesenteric ischemia after combined pancreas kidney transplantation: mycophenolate mofetil as an etiological factor? 2000 Transplantation pmid:10972233
Burroughs TE et al. Increasing incidence of new-onset diabetes after transplant among pediatric renal transplant patients. 2009 Transplantation pmid:19667939
Mittal SK et al. Increased interleukin-10 production without expansion of CD4+CD25+ T-regulatory cells in early stable renal transplant patients on calcineurin inhibitors. 2009 Transplantation pmid:19667950
Coto E and Tavira B Pharmacogenetics of calcineurin inhibitors in renal transplantation. 2009 Transplantation pmid:19667964
Alonso-Arias R et al. CD127(low) expression in CD4+CD25(high) T cells as immune biomarker of renal function in transplant patients. 2009 Transplantation pmid:19667968
Galliford J et al. ABO incompatible living renal transplantation with a steroid sparing protocol. 2008 Transplantation pmid:18852653
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Yu S et al. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. 2006 Transplantation pmid:16421475
Borrows R et al. Five years of steroid sparing in renal transplantation with tacrolimus and mycophenolate mofetil. 2006 Transplantation pmid:16421488
Kung L and Halloran PF Immunophilins may limit calcineurin inhibition by cyclosporine and tacrolimus at high drug concentrations. 2000 Transplantation pmid:10933159
Beatty PR et al. Effect of cyclosporine and tacrolimus on the growth of Epstein-Barr virus-transformed B-cell lines. 1998 Transplantation pmid:9603175
Maes BD et al. Differences in gastric motor activity in renal transplant recipients treated with FK-506 versus cyclosporine. 1999 Transplantation pmid:10589943
Gruber SA et al. Initial results of solitary pancreas transplants performed without regard to donor/recipient HLA mismatching. 2000 Transplantation pmid:10933170
Shapiro R et al. Alopecia as a consequence of tacrolimus therapy. 1998 Transplantation pmid:9603186
Fernandez LA et al. The effects of maintenance doses of FK506 versus cyclosporin A on glucose and lipid metabolism after orthotopic liver transplantation. 1999 Transplantation pmid:10589951
Lang T et al. Production of IL-4 and IL-10 does not lead to immune quiescence in vascularized human organ grafts. 1996 Transplantation pmid:8824477
Mehra MR et al. Ethnic disparity in clinical outcome after heart transplantation is abrogated using tacrolimus and mycophenolate mofetil-based immunosuppression. 2002 Transplantation pmid:12490790
Batten P et al. Human T cell responses to human and porcine endothelial cells are highly sensitive to cyclosporin A and FK506 in vitro. 1999 Transplantation pmid:10589954
Dickenmann MJ et al. Blood eosinophilia in tacrolimus-treated patients: an indicator of Pneumocystis carinii pneumonia. 1999 Transplantation pmid:10589963
First MR et al. New-onset diabetes after transplantation (NODAT): an evaluation of definitions in clinical trials. 2013 Transplantation pmid:23619735
Naesens M and Sarwal MM Monitoring calcineurin inhibitor therapy: localizing the moving target. 2010 Transplantation pmid:20458272
Kaufman DB et al. The successful use of tacrolimus (FK506) in a pancreas/kidney transplant recipient with recurrent cyclosporine-associated hemolytic uremic syndrome. 1995 Transplantation pmid:7541579
Ho ET et al. Once-daily extended-release versus twice-daily standard-release tacrolimus in kidney transplant recipients: a systematic review. 2013 Transplantation pmid:23542469
Thorp M et al. The effect of conversion from cyclosporine to tacrolimus on gingival hyperplasia, hirsutism and cholesterol. 2000 Transplantation pmid:10762229
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Fujii Y et al. Effect of a novel immunosuppressive agent, FK506, on mitogen-induced inositol phospholipid degradation in rat thymocytes. 1989 Transplantation pmid:2472025
Porrini E et al. Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. 2008 Transplantation pmid:18431233
Veroux M et al. Impact of conversion to a once daily tacrolimus-based regimen in kidney transplant recipients with gastrointestinal complications. 2012 Transplantation pmid:22298033
Naesens M et al. Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. 2008 Transplantation pmid:18431234
Meier M et al. Slowing the progression of chronic allograft nephropathy by conversion from cyclosporine to tacrolimus: a randomized controlled trial. 2006 Transplantation pmid:16612281
Amundsen R et al. Rimonabant affects cyclosporine a, but not tacrolimus pharmacokinetics in renal transplant recipients. 2009 Transplantation pmid:19384170
Kessler L et al. Tacrolimus-associated optic neuropathy after pancreatic islet transplantation using a sirolimus/tacrolimus immunosuppressive regimen. 2006 Transplantation pmid:16495816
Meiser BM The best dosing for initial tacrolimus application is trough level adapted! 2005 Transplantation pmid:15714162
Podesser BK et al. Comparison of low and high initial tacrolimus dosing in primary heart transplant recipients: a prospective European multicenter study. 2005 Transplantation pmid:15714171
Taylor-Fishwick DA et al. Evidence that rapamycin has differential effects of IL-4 function. Multiple IL-4 signaling pathways and implications for in vivo use. 1993 Transplantation pmid:7689258
Tamura K et al. Transcriptional inhibition of insulin by FK506 and possible involvement of FK506 binding protein-12 in pancreatic beta-cell. 1995 Transplantation pmid:7539960
Cantarovich D et al. Switching from cyclosporine to tacrolimus in patients with chronic transplant dysfunction or cyclosporine-induced adverse events. 2005 Transplantation pmid:15714172
Shaefer MS et al. Falsely elevated FK-506 levels caused by sampling through central venous catheters. 1993 Transplantation pmid:7689264
Valdivia LA et al. Dendritic cell replacement in long-surviving liver and cardiac xenografts. 1993 Transplantation pmid:7689265
Wang K et al. Transplantation of infantile bladder in rats: an alternative procedure for bladder augmentation. 2001 Transplantation pmid:11213059
Gruessner RW et al. Donor-specific portal blood transfusion in intestinal transplantation: a prospective, preclinical large animal study. 1998 Transplantation pmid:9701258
Danziger-Isakov LA et al. The risk, prevention, and outcome of cytomegalovirus after pediatric lung transplantation. 2009 Transplantation pmid:19461492
Guasch A et al. Assessment of efficacy and safety of FK778 in comparison with standard care in renal transplant recipients with untreated BK nephropathy. 2010 Transplantation pmid:20811320
Ciancio G et al. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. 2004 Transplantation pmid:14742990
Azzola A et al. Everolimus and mycophenolate mofetil are potent inhibitors of fibroblast proliferation after lung transplantation. 2004 Transplantation pmid:14742993
Ferdman RM et al. Rapid intravenous desensitization to antithymocyte globulin in a patient with aplastic anemia. 2004 Transplantation pmid:14743005
Nankivell BJ et al. Oral cyclosporine but not tacrolimus reduces renal transplant blood flow. 2004 Transplantation pmid:15167607
Gibson SW et al. Nutritional immunomodulation leads to enhanced allograft survival in combination with cyclosporine A and rapamycin, but not FK506. 2000 Transplantation pmid:10852592
Konrad T et al. Regulation of glucose tolerance in patients after liver transplantation: impact of cyclosporin versus tacrolimus therapy. 2000 Transplantation pmid:10852599
Pirenne J et al. Combined transplantation of small and large bowel. FK506 versus cyclosporine A in a porcine model. 1996 Transplantation pmid:8685944
Peng Y et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. 2013 Transplantation pmid:23263506
Tsugita M et al. Tacrolimus pretreatment attenuates preexisting xenospecific immunity and abrogates hyperacute rejection in a presensitized hamster to rat liver transplant model. 1996 Transplantation pmid:8685952
Kuypers DR et al. Improved adherence to tacrolimus once-daily formulation in renal recipients: a randomized controlled trial using electronic monitoring. 2013 Transplantation pmid:23263559
Hewitt CW and Black KS Comparative studies of FK506 with cyclosporine. 1988 Transplantation pmid:2458644
Lake JR et al. The impact of immunosuppressive regimens on the cost of liver transplantation--results from the U.S. FK506 multicenter trial. 1995 Transplantation pmid:7482713
Ellis D et al. Phospholipase-C and Na-K ATPase activation by cyclosporine and FK506 in LLC-PK1, cells. Possible implications in blood pressure regulation. 1991 Transplantation pmid:1714643
White M et al. Subclinical inflammation and prothrombotic state in heart transplant recipients: impact of cyclosporin microemulsion vs. tacrolimus. 2006 Transplantation pmid:17006323
Wissing KM et al. Effect of atorvastatin therapy and conversion to tacrolimus on hypercholesterolemia and endothelial dysfunction after renal transplantation. 2006 Transplantation pmid:17006324