tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Mite Infestations D008924 1 associated lipids
Feline Infectious Peritonitis D016766 1 associated lipids
Fox-Fordyce Disease D005588 2 associated lipids
Primary Graft Dysfunction D055031 1 associated lipids
Sleep Apnea, Central D020182 1 associated lipids
Protoporphyria, Erythropoietic D046351 1 associated lipids
Digestive System Diseases D004066 3 associated lipids
Pancreatitis, Graft D055589 1 associated lipids
Candidiasis, Invasive D058365 2 associated lipids
Intestinal Volvulus D045822 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Miyauchi T et al. Effect of donor-specific splenocytes via portal vein and FK506 in rat small bowel transplantation. 1998 Transplantation pmid:9448139
Koprak S et al. Depletion of the mature CD4+8- thymocyte subset by FK506 analogs correlates with their immunosuppressive and calcineurin inhibitory activities. 1996 Transplantation pmid:8623162
Hoffman AL et al. The use of FK-506 for small intestine allotransplantation. Inhibition of acute rejection and prevention of fatal graft-versus-host disease. 1990 Transplantation pmid:1690469
Conrotto D et al. Dramatic increase of tacrolimus plasma concentration during topical treatment for oral graft-versus-host disease. 2006 Transplantation pmid:17060865
Khanna A et al. Tacrolimus induces increased expression of transforming growth factor-beta1 in mammalian lymphoid as well as nonlymphoid cells. 1999 Transplantation pmid:10071036
Jiang H et al. Tacrolimus and cyclosporine differ in their capacity to overcome ongoing allograft rejection as a result of their differential abilities to inhibit interleukin-10 production. 2002 Transplantation pmid:12085006
Mor E et al. Late-onset acute rejection in orthotopic liver transplantation--associated risk factors and outcome. 1992 Transplantation pmid:1279849
Stojanovic J et al. Immune Desensitization Allows Pediatric Blood Group Incompatible Kidney Transplantation. 2017 Transplantation pmid:27463537
Lo A et al. Comparison of sirolimus-based calcineurin inhibitor-sparing and calcineurin inhibitor-free regimens in cadaveric renal transplantation. 2004 Transplantation pmid:15114090
Shoker A et al. Heightened CD40 ligand gene expression in peripheral CD4+ T cells from patients with kidney allograft rejection. 2000 Transplantation pmid:10949194
Bäckman L et al. FK506 trough levels in whole blood and plasma in liver transplant recipients. Correlation with clinical events and side effects. 1994 Transplantation pmid:7509516
Chan K et al. Kidney transplantation with minimized maintenance: alemtuzumab induction with tacrolimus monotherapy--an open label, randomized trial. 2011 Transplantation pmid:21836540
Jain AB et al. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone, and mycophenolate mofetil in primary adult liver transplant recipients: an interim report. 1998 Transplantation pmid:9846530
Borger P et al. Cyclosporine, FK506, mycophenolate mofetil, and prednisolone differentially modulate cytokine gene expression in human airway-derived epithelial cells. 2000 Transplantation pmid:10798763
Jugie M et al. Study of the impact of liver transplantation on the outcome of intestinal grafts in children. 2006 Transplantation pmid:16612274
Ochiai T et al. Optimal serum trough levels of FK506 in renal allotransplantation of the beagle dog. 1989 Transplantation pmid:2474208
Xu H et al. Simultaneous bone marrow and composite tissue transplantation in rats treated with nonmyeloablative conditioning promotes tolerance. 2013 Transplantation pmid:23250336
Muraki T et al. Antithrombotic effect of FK506 versus prothrombotic effect of cyclosporine in vivo. 1995 Transplantation pmid:7544038
Uchikoshi F et al. Restoration of immune abnormalities in diabetic BB rats after pancreas transplantation. I. Macrochimerism of donor-graft-derived RT6+ T cells responsible for restoration of immune responsiveness and suppression of autoimmune reaction. 1996 Transplantation pmid:8669109
Maluccio M et al. Tacrolimus enhances transforming growth factor-beta1 expression and promotes tumor progression. 2003 Transplantation pmid:12923450