tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Dermatitis, Perioral D019557 4 associated lipids
Pouchitis D019449 3 associated lipids
Endotoxemia D019446 27 associated lipids
Oral Ulcer D019226 1 associated lipids
Gingival Overgrowth D019214 7 associated lipids
Fasciitis, Necrotizing D019115 1 associated lipids
Postoperative Hemorrhage D019106 7 associated lipids
Multiple Endocrine Neoplasia Type 2a D018813 1 associated lipids
Anemia, Iron-Deficiency D018798 6 associated lipids
Encephalitis, Viral D018792 3 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Peterson LB et al. A tacrolimus-related immunosuppressant with biochemical properties distinct from those of tacrolimus. 1998 Transplantation pmid:9448137
Connor A et al. Generic tacrolimus in renal transplantation: trough blood concentration as a surrogate for drug exposure. 2012 Transplantation pmid:23318306
Plock JA et al. Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells Prolong Graft Survival in Vascularized Composite Allotransplantation. 2015 Transplantation pmid:26102613
Stevens RB et al. Randomized trial of single-dose versus divided-dose rabbit anti-thymocyte globulin induction in renal transplantation: an interim report. 2008 Transplantation pmid:18497677
Gurk-Turner C et al. Thymoglobulin dose optimization for induction therapy in high risk kidney transplant recipients. 2008 Transplantation pmid:18497682
Pirsch JD Cytomegalovirus infection and posttransplant lymphoproliferative disease in renal transplant recipients: results of the U.S. multicenter FK506 Kidney Transplant Study Group. 1999 Transplantation pmid:10551653
Taber DJ et al. Tacrolimus Trough Concentration Variability and Disparities in African American Kidney Transplantation. 2017 Transplantation pmid:28658199
Diémé B et al. Assessing the metabolic effects of calcineurin inhibitors in renal transplant recipients by urine metabolic profiling. 2014 Transplantation pmid:24598938
Mañez R et al. Fluconazole therapy in transplant recipients receiving FK506. 1994 Transplantation pmid:7515201
Hirose R et al. Experience with daclizumab in liver transplantation: renal transplant dosing without calcineurin inhibitors is insufficient to prevent acute rejection in liver transplantation. 2000 Transplantation pmid:10670644
Han DH et al. Effect of sirolimus on calcineurin inhibitor-induced nephrotoxicity using renal expression of KLOTHO, an antiaging gene. 2010 Transplantation pmid:20562737
Hirano Y et al. Morphological and functional changes of islets of Langerhans in FK506-treated rats. 1992 Transplantation pmid:1373536
Hoffman AL et al. The use of FK-506 for small intestine allotransplantation. Inhibition of acute rejection and prevention of fatal graft-versus-host disease. 1990 Transplantation pmid:1690469
Sindhi R et al. Sirolimus for rescue and primary immunosuppression in transplanted children receiving tacrolimus. 2001 Transplantation pmid:11571449
Jain A et al. Long-term follow-up after liver transplantation for alcoholic liver disease under tacrolimus. 2000 Transplantation pmid:11087149
Shibutani S et al. Effects of immunosuppressants on induction of regulatory cells after intratracheal delivery of alloantigen. 2005 Transplantation pmid:15849542
Tory R et al. Tacrolimus-induced elevation in plasma triglyceride concentrations after administration to renal transplant patients is partially due to a decrease in lipoprotein lipase activity and plasma concentrations. 2009 Transplantation pmid:19584682
Weiler N et al. Early steroid-free immunosuppression with FK506 after liver transplantation: long-term results of a prospectively randomized double-blinded trial. 2010 Transplantation pmid:21048536
First MR Strategies to minimize immunological and nonimmunological risk factors in the renal transplant population. 2001 Transplantation pmid:11585240
Koomans HA and Ligtenberg G Mechanisms and consequences of arterial hypertension after renal transplantation. 2001 Transplantation pmid:11585243
Trimarchi HM et al. FK506-associated thrombotic microangiopathy: report of two cases and review of the literature. 1999 Transplantation pmid:10071024
Luan FL et al. Rapamycin blocks tumor progression: unlinking immunosuppression from antitumor efficacy. 2002 Transplantation pmid:12042641
Hoogduijn MJ et al. Susceptibility of human mesenchymal stem cells to tacrolimus, mycophenolic acid, and rapamycin. 2008 Transplantation pmid:19005411
Hadley S et al. Major infectious complications after orthotopic liver transplantation and comparison of outcomes in patients receiving cyclosporine or FK506 as primary immunosuppression. 1995 Transplantation pmid:7535482
Gill JS et al. Screening for de novo anti-human leukocyte antigen antibodies in nonsensitized kidney transplant recipients does not predict acute rejection. 2010 Transplantation pmid:20098280
Alessiani M et al. Combined immunosuppressive therapy with tacrolimus and mycophenolate mofetil for small bowel transplantation in pigs. 1996 Transplantation pmid:8830816
Pascual J et al. Alemtuzumab induction and antibody-mediated kidney rejection after simultaneous pancreas-kidney transplantation. 2009 Transplantation pmid:19136902
Vossen M et al. Bone quality in swine composite tissue allografts: effects of combination immunotherapy. 2005 Transplantation pmid:16123723
Furlan V et al. Interactions between FK506 and rifampicin or erythromycin in pediatric liver recipients. 1995 Transplantation pmid:7537398
Akst LM et al. Induction of tolerance in a rat model of laryngeal transplantation. 2003 Transplantation pmid:14688529
Lauria MW et al. Metabolic long-term follow-up of functioning simultaneous pancreas-kidney transplantation versus pancreas transplantation alone: insights and limitations. 2010 Transplantation pmid:20061923
Koch R et al. Cyclosporine A-induced achalasia-like esophageal motility disorder in a liver transplant recipient: successful conversion to tacrolimus. 2003 Transplantation pmid:12973123
Paty BW et al. Inhibitory effects of immunosuppressive drugs on insulin secretion from HIT-T15 cells and Wistar rat islets. 2002 Transplantation pmid:11884930
Dell'Antonio G and Randhawa PS "Striped" pattern of medullary ray fibrosis in allograft biopsies from kidney transplant recipients maintained on tacrolimus. 1999 Transplantation pmid:10030300
Kelly PA et al. Ciprofloxacin does not block the antiproliferative effect of tacrolimus. 1997 Transplantation pmid:9000686
Ueda M et al. A proposal of FK506 optimal dosing in living related liver transplantations. 1995 Transplantation pmid:7544035
Paolillo JA et al. Posttransplant diabetes mellitus in pediatric thoracic organ recipients receiving tacrolimus-based immunosuppression. 2001 Transplantation pmid:11213069
Lauzurica R et al. Tacrolimus-associated severe bilateral corneal ulcer after renal transplantation. 2002 Transplantation pmid:11923710
Mayer AD et al. Multicenter randomized trial comparing tacrolimus (FK506) and cyclosporine in the prevention of renal allograft rejection: a report of the European Tacrolimus Multicenter Renal Study Group. 1997 Transplantation pmid:9275110
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Dinçkan A et al. Evaluation of the first 100 liver transplantations. 2008 Turk J Gastroenterol pmid:18386237