tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Thrombotic Microangiopathies D057049 1 associated lipids
Autoimmune Diseases of the Nervous System D020274 1 associated lipids
Lupus Erythematosus, Discoid D008179 1 associated lipids
Lymphocytic Choriomeningitis D008216 1 associated lipids
Erythroplasia D004919 1 associated lipids
Hepatic Veno-Occlusive Disease D006504 1 associated lipids
West Nile Fever D014901 1 associated lipids
Hypoalbuminemia D034141 1 associated lipids
Arm Injuries D001134 1 associated lipids
Intussusception D007443 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Tümgör G et al. A case of uneventful ABO-incompatible liver transplantation from a deceased donor managed with routine immunosuppressive treatment. 2014 Turk J Gastroenterol pmid:25599790
Dinçkan A et al. Evaluation of the first 100 liver transplantations. 2008 Turk J Gastroenterol pmid:18386237
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Sheiner PA et al. Acute renal failure associated with the use of ibuprofen in two liver transplant recipients on FK506. 1994 Transplantation pmid:7513099
Troppmann C et al. Higher surgical wound complication rates with sirolimus immunosuppression after kidney transplantation: a matched-pair pilot study. 2003 Transplantation pmid:12883205
Frassetto LA et al. Best single time point correlations with AUC for cyclosporine and tacrolimus in HIV-infected kidney and liver transplant recipients. 2014 Transplantation pmid:24389906
Kee TY et al. Treatment of subclinical rejection diagnosed by protocol biopsy of kidney transplants. 2006 Transplantation pmid:16861939
Ellis D et al. Epstein-Barr virus-related disorders in children undergoing renal transplantation with tacrolimus-based immunosuppression. 1999 Transplantation pmid:10532541
Molano RD et al. Long-term islet allograft survival in nonobese diabetic mice treated with tacrolimus, rapamycin, and anti-interleukin-2 antibody. 2003 Transplantation pmid:12811239
Bilolo KK et al. Synergistic effects of malononitrilamides (FK778, FK779) with tacrolimus (FK506) in prevention of acute heart and kidney allograft rejection and reversal of ongoing heart allograft rejection in the rat. 2003 Transplantation pmid:12811249
Waldman WJ et al. Inhibition of angiogenesis-related endothelial activity by the experimental immunosuppressive agent leflunomide. 2001 Transplantation pmid:11707749
Morrissey PE et al. Correlation of clinical outcomes after tacrolimus conversion for resistant kidney rejection or cyclosporine toxicity with pathologic staging by the Banff criteria. 1997 Transplantation pmid:9089224
Murase N et al. Suppression of allograft rejection with FK506. I. Prolonged cardiac and liver survival in rats following short-course therapy. 1990 Transplantation pmid:1696405
Jindal RM et al. Effect of deoxyspergualin on the endocrine function of the rat pancreas. 1993 Transplantation pmid:7504347
Millis JM et al. Tacrolimus for primary treatment of steroid-resistant hepatic allograft rejection. 1996 Transplantation pmid:8629298
Tsuchiya T et al. Comparison of pharmacokinetics and pathology for low-dose tacrolimus once-daily and twice-daily in living kidney transplantation: prospective trial in once-daily versus twice-daily tacrolimus. 2013 Transplantation pmid:23792649
Sheiner PA et al. Increased risk of early rejection correlates with recovery of CD3 cell count after liver transplant in patients receiving OKT3 induction. 1997 Transplantation pmid:9355846
Reding R et al. Conversion from cyclosporine to FK506 for salvage of immunocompromised pediatric liver allografts. Efficacy, toxicity, and dose regimen in 23 children. 1994 Transplantation pmid:7507272
Storb R et al. FK-506 and methotrexate prevent graft-versus-host disease in dogs given 9.2 Gy total body irradiation and marrow grafts from unrelated dog leukocyte antigen-nonidentical donors. 1993 Transplantation pmid:7692635
Egidi MF and Gaber AO Outcomes of African-American kidney-transplant recipients treated with sirolimus, tacrolimus, and corticosteroids. 2003 Transplantation pmid:12605133
McDiarmid SV et al. A comparison of renal function in cyclosporine- and FK-506-treated patients after primary orthotopic liver transplantation. 1993 Transplantation pmid:7692636
Osowski CL et al. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. 1996 Transplantation pmid:8610430
Hilbrands R et al. Predictive factors of allosensitization after immunosuppressant withdrawal in recipients of long-term cultured islet cell grafts. 2013 Transplantation pmid:23857001
Jurcevic S et al. A new enzyme-linked immunosorbent assay to measure anti-endothelial antibodies after cardiac transplantation demonstrates greater inhibition of antibody formation by tacrolimus compared with cyclosporine. 1998 Transplantation pmid:9603168
Shapiro AM et al. Defining optimal immunosuppression for islet transplantation based on reduced diabetogenicity in canine islet autografts. 2002 Transplantation pmid:12490784
Xie Y et al. Delayed Donor Bone Marrow Infusion Induces Liver Transplant Tolerance. 2017 Transplantation pmid:28187014
Rajesh KG et al. Mitochondrial permeability transition-pore inhibition enhances functional recovery after long-time hypothermic heart preservation. 2003 Transplantation pmid:14627909
Arroyo Hornero R et al. CD45RA Distinguishes CD4+CD25+CD127-/low TSDR Demethylated Regulatory T Cell Subpopulations With Differential Stability and Susceptibility to Tacrolimus-Mediated Inhibition of Suppression. 2017 Transplantation pmid:28118317
Tan HP et al. Pediatric living donor kidney transplantation under alemtuzumab pretreatment and tacrolimus monotherapy: 4-year experience. 2008 Transplantation pmid:19104412
Curran CF et al. Acute overdoses of tacrolimus. 1996 Transplantation pmid:8932293
de Fijter JW Tacrolimus dosing in mycophenolate-treated patients--can we get away with less? 2011 Transplantation pmid:21654351
Reyes J et al. Long-term results after conversion from cyclosporine to tacrolimus in pediatric liver transplantation for acute and chronic rejection. 2000 Transplantation pmid:10910279
Yamauchi A et al. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. 2002 Transplantation pmid:12352921
Radkowski M et al. Detection of hepatitis C virus replication in peripheral blood mononuclear cells after orthotopic liver transplantation. 1998 Transplantation pmid:9753352
Ciancio G et al. A randomized long-term trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (NEORAL) and sirolimus in renal transplantation. I. Drug interactions and rejection at one year. 2004 Transplantation pmid:14742989
Farley DE et al. The effect of two new immunosuppressive agents, FK506 and didemnin B, in murine pregnancy. 1991 Transplantation pmid:1713360
Ekberg H et al. Relationship of tacrolimus exposure and mycophenolate mofetil dose with renal function after renal transplantation. 2011 Transplantation pmid:21562449
Rezeig MA et al. Kaposi's sarcoma in liver transplant recipients on FK506: two case reports. 1997 Transplantation pmid:9175820
Foster RD et al. Long-term acceptance of composite tissue allografts through mixed chimerism and CD28 blockade. 2003 Transplantation pmid:14508367
Talento A et al. A single administration of LFA-1 antibody confers prolonged allograft survival. 1993 Transplantation pmid:7679531
Mor E et al. Reversal of gastrointestinal toxicity associated with long-term FK506 immunosuppression by conversion to cyclosporine in liver transplant recipients. 1994 Transplantation pmid:7513098