tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Body Weight D001835 333 associated lipids
Lung Neoplasms D008175 171 associated lipids
Adenocarcinoma D000230 166 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Edema D004487 152 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hemolysis D006461 131 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Inflammation D007249 119 associated lipids
Hypertension D006973 115 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Koneru B et al. Blood transfusions in liver recipients: a conundrum or a clear benefit in the cyclosporine/tacrolimus era? 1997 Transplantation pmid:9197350
Wozniak LJ et al. Donor-specific HLA Antibodies Are Associated With Late Allograft Dysfunction After Pediatric Liver Transplantation. 2015 Transplantation pmid:26038872
Boldt A et al. The influence of immunosuppressive drugs on T- and B-cell apoptosis via p53-mediated pathway in vitro and in vivo. 2006 Transplantation pmid:16906043
Lawsin L and Light JA Severe acute renal failure after exposure to sirolimus-tacrolimus in two living donor kidney recipients. 2003 Transplantation pmid:12544890
Gaber AO et al. Acute rejection characteristics from a prospective, randomized, double-blind, placebo-controlled multicenter trial of early corticosteroid withdrawal. 2013 Transplantation pmid:23423269
Guethoff S et al. Ten-year results of a randomized trial comparing tacrolimus versus cyclosporine a in combination with mycophenolate mofetil after heart transplantation. 2013 Transplantation pmid:23423270
Miyakoshi S et al. Tacrolimus as prophylaxis for acute graft-versus-host disease in reduced intensity cord blood transplantation for adult patients with advanced hematologic diseases. 2007 Transplantation pmid:17700155
Huang E et al. Alemtuzumab induction in deceased donor kidney transplantation. 2007 Transplantation pmid:17984833
Jain A et al. Delayed introduction of tacrolimus postliver transplant with intravenous mycophenolate mofetil preserves renal function without incurring rejection. 2014 Transplantation pmid:25285953
Loucaidou M et al. Five-year results of kidney transplantation under tacrolimus-based regimes: the persisting significance of vascular rejection. 2003 Transplantation pmid:14557763
Toso C et al. Insulin independence after conversion to tacrolimus and sirolimus-based immunosuppression in islet-kidney recipients. 2003 Transplantation pmid:14557767
King-Biggs MB et al. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. 2003 Transplantation pmid:12792493
Vu MD et al. Combination therapy of malononitrilamide FK778 with tacrolimus on cell proliferation assays and in rats receiving renal allografts. 2003 Transplantation pmid:12792496
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Tanabe M et al. Combined immunosuppressive therapy with low dose FK506 and antimetabolites in rat allogeneic heart transplantation. 1994 Transplantation pmid:7518619
Wang SC et al. A dual mechanism of immunosuppression by FK-506. Differential suppression of IL-4 and IL-10 levels in T helper 2 cells. 1993 Transplantation pmid:7692640
Khanna AK Mechanism of the combination immunosuppressive effects of rapamycin with either cyclosporine or tacrolimus. 2000 Transplantation pmid:10972232
Coto E and Tavira B Pharmacogenetics of calcineurin inhibitors in renal transplantation. 2009 Transplantation pmid:19667964
Alonso-Arias R et al. CD127(low) expression in CD4+CD25(high) T cells as immune biomarker of renal function in transplant patients. 2009 Transplantation pmid:19667968
Galliford J et al. ABO incompatible living renal transplantation with a steroid sparing protocol. 2008 Transplantation pmid:18852653
Borrows R et al. Five years of steroid sparing in renal transplantation with tacrolimus and mycophenolate mofetil. 2006 Transplantation pmid:16421488
Batten P et al. Human T cell responses to human and porcine endothelial cells are highly sensitive to cyclosporin A and FK506 in vitro. 1999 Transplantation pmid:10589954
Dickenmann MJ et al. Blood eosinophilia in tacrolimus-treated patients: an indicator of Pneumocystis carinii pneumonia. 1999 Transplantation pmid:10589963
First MR et al. New-onset diabetes after transplantation (NODAT): an evaluation of definitions in clinical trials. 2013 Transplantation pmid:23619735
Naesens M and Sarwal MM Monitoring calcineurin inhibitor therapy: localizing the moving target. 2010 Transplantation pmid:20458272
Kaufman DB et al. The successful use of tacrolimus (FK506) in a pancreas/kidney transplant recipient with recurrent cyclosporine-associated hemolytic uremic syndrome. 1995 Transplantation pmid:7541579
Ho ET et al. Once-daily extended-release versus twice-daily standard-release tacrolimus in kidney transplant recipients: a systematic review. 2013 Transplantation pmid:23542469
Thorp M et al. The effect of conversion from cyclosporine to tacrolimus on gingival hyperplasia, hirsutism and cholesterol. 2000 Transplantation pmid:10762229
Fujii Y et al. Effect of a novel immunosuppressive agent, FK506, on mitogen-induced inositol phospholipid degradation in rat thymocytes. 1989 Transplantation pmid:2472025
Porrini E et al. Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. 2008 Transplantation pmid:18431233
Veroux M et al. Impact of conversion to a once daily tacrolimus-based regimen in kidney transplant recipients with gastrointestinal complications. 2012 Transplantation pmid:22298033
Naesens M et al. Maturation of dose-corrected tacrolimus predose trough levels in pediatric kidney allograft recipients. 2008 Transplantation pmid:18431234
Amundsen R et al. Rimonabant affects cyclosporine a, but not tacrolimus pharmacokinetics in renal transplant recipients. 2009 Transplantation pmid:19384170
Podesser BK et al. Comparison of low and high initial tacrolimus dosing in primary heart transplant recipients: a prospective European multicenter study. 2005 Transplantation pmid:15714171
Tamura K et al. Transcriptional inhibition of insulin by FK506 and possible involvement of FK506 binding protein-12 in pancreatic beta-cell. 1995 Transplantation pmid:7539960
Cantarovich D et al. Switching from cyclosporine to tacrolimus in patients with chronic transplant dysfunction or cyclosporine-induced adverse events. 2005 Transplantation pmid:15714172
Shaefer MS et al. Falsely elevated FK-506 levels caused by sampling through central venous catheters. 1993 Transplantation pmid:7689264
Valdivia LA et al. Dendritic cell replacement in long-surviving liver and cardiac xenografts. 1993 Transplantation pmid:7689265
Wang K et al. Transplantation of infantile bladder in rats: an alternative procedure for bladder augmentation. 2001 Transplantation pmid:11213059
Gruessner RW et al. Donor-specific portal blood transfusion in intestinal transplantation: a prospective, preclinical large animal study. 1998 Transplantation pmid:9701258
Danziger-Isakov LA et al. The risk, prevention, and outcome of cytomegalovirus after pediatric lung transplantation. 2009 Transplantation pmid:19461492
Ferdman RM et al. Rapid intravenous desensitization to antithymocyte globulin in a patient with aplastic anemia. 2004 Transplantation pmid:14743005
Gibson SW et al. Nutritional immunomodulation leads to enhanced allograft survival in combination with cyclosporine A and rapamycin, but not FK506. 2000 Transplantation pmid:10852592
Konrad T et al. Regulation of glucose tolerance in patients after liver transplantation: impact of cyclosporin versus tacrolimus therapy. 2000 Transplantation pmid:10852599
Pirenne J et al. Combined transplantation of small and large bowel. FK506 versus cyclosporine A in a porcine model. 1996 Transplantation pmid:8685944
Tsugita M et al. Tacrolimus pretreatment attenuates preexisting xenospecific immunity and abrogates hyperacute rejection in a presensitized hamster to rat liver transplant model. 1996 Transplantation pmid:8685952
Kuypers DR et al. Improved adherence to tacrolimus once-daily formulation in renal recipients: a randomized controlled trial using electronic monitoring. 2013 Transplantation pmid:23263559
Lake JR et al. The impact of immunosuppressive regimens on the cost of liver transplantation--results from the U.S. FK506 multicenter trial. 1995 Transplantation pmid:7482713
White M et al. Subclinical inflammation and prothrombotic state in heart transplant recipients: impact of cyclosporin microemulsion vs. tacrolimus. 2006 Transplantation pmid:17006323