tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Abnormalities, Multiple D000015 13 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Acne Vulgaris D000152 35 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adrenal Insufficiency D000309 3 associated lipids
Akinetic Mutism D000405 1 associated lipids
Albuminuria D000419 18 associated lipids
Alopecia D000505 14 associated lipids
Alopecia Areata D000506 6 associated lipids
Alzheimer Disease D000544 76 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Connor A et al. Generic tacrolimus in renal transplantation: trough blood concentration as a surrogate for drug exposure. 2012 Transplantation pmid:23318306
Plock JA et al. Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells Prolong Graft Survival in Vascularized Composite Allotransplantation. 2015 Transplantation pmid:26102613
Gurk-Turner C et al. Thymoglobulin dose optimization for induction therapy in high risk kidney transplant recipients. 2008 Transplantation pmid:18497682
Haririan A et al. Polyomavirus reactivation in native kidneys of pancreas alone allograft recipients. 2003 Transplantation pmid:12717201
Arns W et al. Pharmacokinetics and Clinical Outcomes of Generic Tacrolimus (Hexal) Versus Branded Tacrolimus in De Novo Kidney Transplant Patients: A Multicenter, Randomized Trial. 2017 Transplantation pmid:28658202
Taber DJ et al. Tacrolimus Trough Concentration Variability and Disparities in African American Kidney Transplantation. 2017 Transplantation pmid:28658199
Diémé B et al. Assessing the metabolic effects of calcineurin inhibitors in renal transplant recipients by urine metabolic profiling. 2014 Transplantation pmid:24598938
Han DH et al. Effect of sirolimus on calcineurin inhibitor-induced nephrotoxicity using renal expression of KLOTHO, an antiaging gene. 2010 Transplantation pmid:20562737
Budde K et al. Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in maintenance renal transplant recipients receiving tacrolimus: clinical, pharmacokinetic, and pharmacodynamic outcomes. 2007 Transplantation pmid:17318074
Stegall MD et al. Mycophenolate mofetil decreases rejection in simultaneous pancreas-kidney transplantation when combined with tacrolimus or cyclosporine. 1997 Transplantation pmid:9422404
Shibutani S et al. Effects of immunosuppressants on induction of regulatory cells after intratracheal delivery of alloantigen. 2005 Transplantation pmid:15849542
Tory R et al. Tacrolimus-induced elevation in plasma triglyceride concentrations after administration to renal transplant patients is partially due to a decrease in lipoprotein lipase activity and plasma concentrations. 2009 Transplantation pmid:19584682
Weiler N et al. Early steroid-free immunosuppression with FK506 after liver transplantation: long-term results of a prospectively randomized double-blinded trial. 2010 Transplantation pmid:21048536
Chisholm MA et al. Renal transplant patient compliance with free immunosuppressive medications. 2000 Transplantation pmid:11063348
Busuttil RW et al. General guidelines for the use of tacrolimus in adult liver transplant patients. 1996 Transplantation pmid:8607197
Atkison PR et al. Arteritis and increased intracellular calcium as a possible mechanism for tacrolimus-related cardiac toxicity in a pediatric transplant recipient. 1997 Transplantation pmid:9311719
Hoogduijn MJ et al. Susceptibility of human mesenchymal stem cells to tacrolimus, mycophenolic acid, and rapamycin. 2008 Transplantation pmid:19005411
Tzakis AG et al. Preliminary experience with alemtuzumab (Campath-1H) and low-dose tacrolimus immunosuppression in adult liver transplantation. 2004 Transplantation pmid:15114087
Talbot D et al. Alopecia as a consequence of tacrolimus therapy in renal transplantation? 1997 Transplantation pmid:9415574
Gregory CR et al. Treatment with rapamycin and mycophenolic acid reduces arterial intimal thickening produced by mechanical injury and allows endothelial replacement. 1995 Transplantation pmid:7533955
Gill JS et al. Screening for de novo anti-human leukocyte antigen antibodies in nonsensitized kidney transplant recipients does not predict acute rejection. 2010 Transplantation pmid:20098280
Zhao W et al. Pharmacokinetic interaction between tacrolimus and amlodipine in a renal transplant child. 2012 Transplantation pmid:22450597
Pascual J et al. Alemtuzumab induction and antibody-mediated kidney rejection after simultaneous pancreas-kidney transplantation. 2009 Transplantation pmid:19136902
Ciancio G et al. A randomized trial of three renal transplant induction antibodies: early comparison of tacrolimus, mycophenolate mofetil, and steroid dosing, and newer immune-monitoring. 2005 Transplantation pmid:16123718
Vossen M et al. Bone quality in swine composite tissue allografts: effects of combination immunotherapy. 2005 Transplantation pmid:16123723
Suzuki S et al. Neutrophil infiltration as an important factor in liver ischemia and reperfusion injury. Modulating effects of FK506 and cyclosporine. 1993 Transplantation pmid:7685932
Lauria MW et al. Metabolic long-term follow-up of functioning simultaneous pancreas-kidney transplantation versus pancreas transplantation alone: insights and limitations. 2010 Transplantation pmid:20061923
Pascual M et al. Plasma exchange and tacrolimus-mycophenolate rescue for acute humoral rejection in kidney transplantation. 1998 Transplantation pmid:9869086
Strumph P et al. The effect of FK506 on glycemic response as assessed by the hyperglycemic clamp technique. 1995 Transplantation pmid:7542815
Baran DA et al. Tacrolimus in cardiac transplantation: efficacy and safety of a novel dosing protocol. 2002 Transplantation pmid:12438960
Higgins R et al. Rises and falls in donor-specific and third-party HLA antibody levels after antibody incompatible transplantation. 2009 Transplantation pmid:19300192
Steiner RW Steroid withdrawal in kidney transplantation: the subgroup fallacy. 2011 Transplantation pmid:21336084
Arai K et al. Limb allografts in rats immunosuppressed with FK506. I. Reversal of rejection and indefinite survival. 1989 Transplantation pmid:2479130
Vathsala A et al. The immunosuppressive antagonism of low doses of FK506 and cyclosporine. 1991 Transplantation pmid:1713361
Kawano K et al. A protective effect of FK506 in ischemically injured rat livers. 1991 Transplantation pmid:1713362
Yuzawa K and Fukao K Topical FK506 ointment for skin grafting. 1998 Transplantation pmid:9565111
Higgins RM et al. Conversion from tacrolimus to cyclosporin in stable renal transplant patients: safety, metabolic changes, and pharmacokinetic comparison. 2000 Transplantation pmid:10919600
Zieliński A et al. Simultaneous pancreas-kidney transplant from living related donor: a single-center experience. 2003 Transplantation pmid:12923442
Markus PM et al. Prevention of graft-versus-host disease following allogeneic bone marrow transplantation in rats using FK506. 1991 Transplantation pmid:1718063
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Dinçkan A et al. Evaluation of the first 100 liver transplantations. 2008 Turk J Gastroenterol pmid:18386237