tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Uremia D014511 33 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Nocardia Infections D009617 6 associated lipids
Diarrhea D003967 32 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Graft Occlusion, Vascular D006083 11 associated lipids
Hypercalcemia D006934 13 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Bacterial Infections D001424 21 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Mouth Diseases D009059 5 associated lipids
Meningococcal Infections D008589 3 associated lipids
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Mycobacterium Infections D009164 7 associated lipids
Sarcoidosis D012507 13 associated lipids
Hepatolenticular Degeneration D006527 3 associated lipids
Hyperglycemia D006943 21 associated lipids
Carcinoma, Squamous Cell D002294 14 associated lipids
Skin Neoplasms D012878 12 associated lipids
Burns D002056 34 associated lipids
Inflammation D007249 119 associated lipids
Inflammatory Bowel Diseases D015212 9 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Precancerous Conditions D011230 48 associated lipids
Postoperative Complications D011183 5 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Surgical Wound Infection D013530 7 associated lipids
Neoplasm Recurrence, Local D009364 5 associated lipids
Osteonecrosis D010020 5 associated lipids
Hypotension D007022 41 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Heart Failure D006333 36 associated lipids
Angioedema D000799 6 associated lipids
Fractures, Spontaneous D005598 4 associated lipids
Hydronephrosis D006869 4 associated lipids
Trypanosomiasis D014352 5 associated lipids
Alopecia D000505 14 associated lipids
Liver Diseases D008107 31 associated lipids
Corneal Diseases D003316 13 associated lipids
Testicular Diseases D013733 15 associated lipids
Facial Dermatoses D005148 7 associated lipids
Hypersensitivity D006967 22 associated lipids
Osteosarcoma D012516 50 associated lipids
Acne Vulgaris D000152 35 associated lipids
Urination Disorders D014555 9 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Anemia, Hemolytic D000743 4 associated lipids
Leukemia, Erythroblastic, Acute D004915 41 associated lipids
Vision Disorders D014786 10 associated lipids
Multiple Myeloma D009101 13 associated lipids
Osteochondrodysplasias D010009 3 associated lipids
Melanoma D008545 69 associated lipids
Hematologic Diseases D006402 3 associated lipids
Muscular Dystrophies D009136 10 associated lipids
Osteoporosis D010024 12 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Kidney Diseases D007674 29 associated lipids
Hematuria D006417 13 associated lipids
Weight Gain D015430 101 associated lipids
Brain Diseases D001927 27 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Infection D007239 6 associated lipids
Abnormalities, Multiple D000015 13 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Glioma D005910 112 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Bone Diseases D001847 4 associated lipids
Leukemia P388 D007941 43 associated lipids
Ulcer D014456 16 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Obesity D009765 29 associated lipids
Thrombosis D013927 49 associated lipids
Bradycardia D001919 13 associated lipids
Hemorrhage D006470 15 associated lipids
Proteinuria D011507 30 associated lipids
Lymphoma D008223 18 associated lipids
Femur Head Necrosis D005271 5 associated lipids
Alzheimer Disease D000544 76 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
Eye Diseases D005128 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Morrissey PE Prope tolerance: is it the end or the means? 2009 Transplantation pmid:19502973
Farid SG et al. Alemtuzumab (Campath-1H)-induced coagulopathy in renal transplantation. 2009 Transplantation pmid:19502974
Cvetkovic M et al. The deleterious effects of long-term cyclosporine A, cyclosporine G, and FK506 on bone mineral metabolism in vivo. 1994 Transplantation pmid:7513912
Moss MC et al. Lithium use for bipolar disorder post renal transplant: is mood stabilization without toxicity possible? 2014 Transplantation pmid:24492429
Wozniak LJ et al. Donor-specific HLA Antibodies Are Associated With Late Allograft Dysfunction After Pediatric Liver Transplantation. 2015 Transplantation pmid:26038872
Narayanan M et al. Outcomes in African American kidney transplant patients receiving tacrolimus and mycophenolic acid immunosuppression. 2013 Transplantation pmid:23423268
Benito N et al. Alternariosis after liver transplantation. 2001 Transplantation pmid:11740399
Gaber AO et al. Acute rejection characteristics from a prospective, randomized, double-blind, placebo-controlled multicenter trial of early corticosteroid withdrawal. 2013 Transplantation pmid:23423269
Hodge G et al. Lymphocytic bronchiolitis is associated with inadequate suppression of blood T-cell granzyme B, IFN-gamma, and TNF-alpha. 2010 Transplantation pmid:20559033
Schäffer MR et al. Tacrolimus impairs wound healing: a possible role of decreased nitric oxide synthesis. 1998 Transplantation pmid:9539093
Manez R et al. Rejection and hepatitis in liver transplants. 1994 Transplantation pmid:7517080
Jain A et al. Delayed introduction of tacrolimus postliver transplant with intravenous mycophenolate mofetil preserves renal function without incurring rejection. 2014 Transplantation pmid:25285953
Cao W et al. Effects of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Inhibition of basic fibroblast growth factor and platelet-derived growth factor action and antagonism of rapamycin by FK506. 1995 Transplantation pmid:7532879
Murase N et al. Suppression of allograft rejection with FK506. I. Prolonged cardiac and liver survival in rats following short-course therapy. 1990 Transplantation pmid:1696405
Soccal PM et al. Improvement of drug-induced chronic renal failure in lung transplantation. 1999 Transplantation pmid:10428288
Lee CM et al. Outcomes in diabetic patients after simultaneous pancreas-kidney versus kidney alone transplantation. 1997 Transplantation pmid:9371670
Migita K et al. FK506 potentiates steroid-induced T-cell apoptosis. 1997 Transplantation pmid:9371682
Dhar DK et al. Effective prevention of ischemic injury of the dearterialized canine liver by FK506 pretreatment. 1993 Transplantation pmid:7506456
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Fabrega AJ et al. Enhancement of allograft survival by single intraoperative donor-specific blood transfusion combined with FK506. 1993 Transplantation pmid:7506458
Burke MD et al. Inhibition of the metabolism of cyclosporine by human liver microsomes by FK506. 1990 Transplantation pmid:1700507
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Koh A et al. Supplemental islet infusions restore insulin independence after graft dysfunction in islet transplant recipients. 2010 Transplantation pmid:20145529
Sofi AA et al. Bullous pemphigoid associated with acute renal allograft rejection. 2010 Transplantation pmid:20145531
Marcén R et al. Lumbar bone mineral density in renal transplant patients on neoral and tacrolimus: a four-year prospective study. 2006 Transplantation pmid:16570003
Barten MJ et al. Synergistic effects of sirolimus with cyclosporine and tacrolimus: analysis of immunosuppression on lymphocyte proliferation and activation in rat whole blood. 2004 Transplantation pmid:15114077
Vennarecci G et al. Apoptosis and rejection in rat intestinal transplantation: correlation with FK506 doses and donor specific bone marrow infusions. 2001 Transplantation pmid:11455248
First MR et al. New-onset diabetes after transplantation (NODAT): an evaluation of definitions in clinical trials. 2013 Transplantation pmid:23619735
Schulman SL et al. Interaction between tacrolimus and chloramphenicol in a renal transplant recipient. 1998 Transplantation pmid:9625026
Uemura T et al. Single dose of alemtuzumab induction with steroid-free maintenance immunosuppression in pancreas transplantation. 2011 Transplantation pmid:21841541
Kai N et al. Prevention of insulitis and diabetes in nonobese diabetic mice by administration of FK506. 1993 Transplantation pmid:7682740
Glicklich D et al. Chronic renal allograft rejection: no response to mycophenolate mofetil. 1998 Transplantation pmid:9721811
Calandra S Sinus arrest during tacrolimus treatment: was the QT interval prolonged? 1998 Transplantation pmid:9721813
Jacobson PA et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. 2011 Transplantation pmid:21206424
Nolan TJ and Schad GA Tacrolimus allows autoinfective development of the parasitic nematode Strongyloides stercoralis. 1996 Transplantation pmid:8878405
Eckhoff DE et al. The safety and efficacy of a two-dose daclizumab (zenapax) induction therapy in liver transplant recipients. 2000 Transplantation pmid:10830224
Klein A et al. Impact of a pharmaceutical care program on liver transplant patients' compliance with immunosuppressive medication: a prospective, randomized, controlled trial using electronic monitoring. 2009 Transplantation pmid:19300186
Beckebaum S et al. Predictive factors of outcome in patients transplanted for hepatitis B. 2009 Transplantation pmid:19300191
Mazariegos GV et al. Weaning of immunosuppression in liver transplant recipients. 1997 Transplantation pmid:9020325
Pascual J et al. Authors' reply: cyclosporine A versus tacrolimus in steroid withdrawal strategies. 2011 Transplantation pmid:21336083
Hardinger KL et al. A randomized, prospective, pharmacoeconomic trial of tacrolimus versus cyclosporine in combination with thymoglobulin in renal transplant recipients. 2005 Transplantation pmid:16003231
Wennberg L et al. The efficacy of CD40 ligand blockade in discordant pig-to-rat islet xenotransplantation is correlated with an immunosuppressive effect of immunoglobulin. 2005 Transplantation pmid:15665763
Kuypers DR et al. Improved adherence to tacrolimus once-daily formulation in renal recipients: a randomized controlled trial using electronic monitoring. 2013 Transplantation pmid:23263559
Nakazawa Y et al. Relationship between in vivo FK506 clearance and in vitro 13-demethylation activity in living-related liver transplantation. 1998 Transplantation pmid:9808496
Krähenbühl S et al. Serious interaction between mibefradil and tacrolimus. 1998 Transplantation pmid:9808502
White M et al. Subclinical inflammation and prothrombotic state in heart transplant recipients: impact of cyclosporin microemulsion vs. tacrolimus. 2006 Transplantation pmid:17006323
Aisa Y et al. Effects of immunosuppressive agents on magnesium metabolism early after allogeneic hematopoietic stem cell transplantation. 2005 Transplantation pmid:16278584
Yoshimura N et al. A case report of pregnancy in renal transplant recipient treated with FK506 (tacrolimus). 1996 Transplantation pmid:8633388
Tanaka J et al. The immunosuppressive agent FK506 enhances the cytolytic activity of inhibitory natural killer cell receptor (CD94/NKG2A)-expressing CD8 T cells. 2005 Transplantation pmid:16378079
Dharancy S et al. Elevated interleukin-4 expression in severe recurrent hepatitis C virus after liver transplantation. 2007 Transplantation pmid:17460561