tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Abnormalities, Multiple D000015 13 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Acne Vulgaris D000152 35 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adrenal Insufficiency D000309 3 associated lipids
Akinetic Mutism D000405 1 associated lipids
Albuminuria D000419 18 associated lipids
Alopecia D000505 14 associated lipids
Alopecia Areata D000506 6 associated lipids
Alzheimer Disease D000544 76 associated lipids
Amenorrhea D000568 4 associated lipids
Amputation, Traumatic D000673 2 associated lipids
Anemia D000740 21 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Anemia, Hemolytic D000743 4 associated lipids
Anemia, Hemolytic, Autoimmune D000744 5 associated lipids
Anemia, Refractory D000753 3 associated lipids
Anemia, Refractory, with Excess of Blasts D000754 2 associated lipids
Aneurysm, Dissecting D000784 2 associated lipids
Angiolymphoid Hyperplasia with Eosinophilia D000796 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Kim EJ et al. Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection. 2014 Am. J. Transplant. pmid:24354871
Frassetto LA et al. Immunosuppressant pharmacokinetics and dosing modifications in HIV-1 infected liver and kidney transplant recipients. 2007 Am. J. Transplant. pmid:17949460
Saliba F et al. Efficacy and Safety of Everolimus and Mycophenolic Acid With Early Tacrolimus Withdrawal After Liver Transplantation: A Multicenter Randomized Trial. 2017 Am. J. Transplant. pmid:28133906
Levitsky J and Feng S Sirolimus and mTOR inhibitors in liver transplantation: the wheel has come full circle. 2014 Am. J. Transplant. pmid:24620373
Asrani SK et al. De novo sirolimus and reduced-dose tacrolimus versus standard-dose tacrolimus after liver transplantation: the 2000-2003 phase II prospective randomized trial. 2014 Am. J. Transplant. pmid:24456026
Song L et al. ASP2409, A Next-Generation CTLA4-Ig, Versus Belatacept in Renal Allograft Survival in Cynomolgus Monkeys. 2017 Am. J. Transplant. pmid:27598231
Ekberg H et al. Calcineurin inhibitor minimization in the Symphony study: observational results 3 years after transplantation. 2009 Am. J. Transplant. pmid:19563339
Sis B et al. Reproducibility studies on arteriolar hyaline thickening scoring in calcineurin inhibitor-treated renal allograft recipients. 2006 Am. J. Transplant. pmid:16686769
Duncan FJ et al. Clinically relevant immunosuppressants influence UVB-induced tumor size through effects on inflammation and angiogenesis. 2007 Am. J. Transplant. pmid:17941958
Hu X et al. Chimeric Allografts Induced by Short-Term Treatment With Stem Cell-Mobilizing Agents Result in Long-Term Kidney Transplant Survival Without Immunosuppression: A Study in Rats. 2016 Am. J. Transplant. pmid:26749344
Cameron AM et al. Chimeric Allografts Induced by Short-Term Treatment With Stem Cell Mobilizing Agents Result in Long-Term Kidney Transplant Survival Without Immunosuppression: II, Study in Miniature Swine. 2016 Am. J. Transplant. pmid:26748958
Bouamar R et al. Tacrolimus predose concentrations do not predict the risk of acute rejection after renal transplantation: a pooled analysis from three randomized-controlled clinical trials(†). 2013 Am. J. Transplant. pmid:23480233
Busque S et al. The PROMISE study: a phase 2b multicenter study of voclosporin (ISA247) versus tacrolimus in de novo kidney transplantation. 2011 Am. J. Transplant. pmid:21943027
Flechner SM et al. Allotransplantation of cryopreserved parathyroid tissue for severe hypocalcemia in a renal transplant recipient. 2010 Am. J. Transplant. pmid:20883540
Benítez CE et al. ATG-Fresenius treatment and low-dose tacrolimus: results of a randomized controlled trial in liver transplantation. 2010 Am. J. Transplant. pmid:20883560
Madariaga ML et al. Kidney-induced cardiac allograft tolerance in miniature swine is dependent on MHC-matching of donor cardiac and renal parenchyma. 2015 Am. J. Transplant. pmid:25824550
Pescovitz MD et al. A randomized, double-blind, pharmacokinetic study of oral maribavir with tacrolimus in stable renal transplant recipients. 2009 Am. J. Transplant. pmid:19663892
Bryan CF et al. Long-term survival of kidneys transplanted from live A2 donors to O and B recipients. 2007 Am. J. Transplant. pmid:17359511
Vincenti F et al. Results of an international, randomized trial comparing glucose metabolism disorders and outcome with cyclosporine versus tacrolimus. 2007 Am. J. Transplant. pmid:17359512
Diaz-Siso JR et al. Initial experience of dual maintenance immunosuppression with steroid withdrawal in vascular composite tissue allotransplantation. 2015 Am. J. Transplant. pmid:25777324
Cendales L et al. Tacrolimus to Belatacept Conversion Following Hand Transplantation: A Case Report. 2015 Am. J. Transplant. pmid:25773260
Rodriguez-Rodriguez AE et al. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. 2013 Am. J. Transplant. pmid:23651473
Klintmalm GB et al. Belatacept-based immunosuppression in de novo liver transplant recipients: 1-year experience from a phase II randomized study. 2014 Am. J. Transplant. pmid:25041339
Jaksch P et al. Alemtuzumab in lung transplantation: an open-label, randomized, prospective single center study. 2014 Am. J. Transplant. pmid:25039364
Neuberger JM et al. Delayed introduction of reduced-dose tacrolimus, and renal function in liver transplantation: the 'ReSpECT' study. 2009 Am. J. Transplant. pmid:19120077
Momper JD et al. The impact of conversion from prograf to generic tacrolimus in liver and kidney transplant recipients with stable graft function. 2011 Am. J. Transplant. pmid:21714845
Tan HP et al. Two hundred living donor kidney transplantations under alemtuzumab induction and tacrolimus monotherapy: 3-year follow-up. 2009 Am. J. Transplant. pmid:19120078
Ashman N et al. Belatacept as maintenance immunosuppression for postrenal transplant de novo drug-induced thrombotic microangiopathy. 2009 Am. J. Transplant. pmid:19120084
Adam R et al. Improved survival in liver transplant recipients receiving prolonged-release tacrolimus in the European Liver Transplant Registry. 2015 Am. J. Transplant. pmid:25703527
Asrani SK and O'Leary JG Can one pill a day keep rejection away? 2015 Am. J. Transplant. pmid:25703394
Lemahieu WP et al. CYP3A4 and P-glycoprotein activity in healthy controls and transplant patients on cyclosporin vs. tacrolimus vs. sirolimus. 2004 Am. J. Transplant. pmid:15307840
Vongwiwatana A et al. Peritubular capillary changes and C4d deposits are associated with transplant glomerulopathy but not IgA nephropathy. 2004 Am. J. Transplant. pmid:14678043
Okabayashi T et al. Mobilization of host stem cells enables long-term liver transplant acceptance in a strongly rejecting rat strain combination. 2011 Am. J. Transplant. pmid:21883903
Carenco C et al. Tacrolimus and the risk of solid cancers after liver transplant: a dose effect relationship. 2015 Am. J. Transplant. pmid:25648361
Mulay AV et al. Impact of immunosuppressive medication on the risk of renal allograft failure due to recurrent glomerulonephritis. 2009 Am. J. Transplant. pmid:19353768
Heller T et al. Plasma concentrations of mycophenolic acid acyl glucuronide are not associated with diarrhea in renal transplant recipients. 2007 Am. J. Transplant. pmid:17532750
Schrepfer S et al. Effect of inhaled tacrolimus on cellular and humoral rejection to prevent posttransplant obliterative airway disease. 2007 Am. J. Transplant. pmid:17532751
Montgomery SP et al. Efficacy and toxicity of a protocol using sirolimus, tacrolimus and daclizumab in a nonhuman primate renal allotransplant model. 2002 Am. J. Transplant. pmid:12118862
Ahsan N et al. Limited dose monoclonal IL-2R antibody induction protocol after primary kidney transplantation. 2002 Am. J. Transplant. pmid:12118902
Pallet N et al. Kidney transplant recipients carrying the CYP3A4*22 allelic variant have reduced tacrolimus clearance and often reach supratherapeutic tacrolimus concentrations. 2015 Am. J. Transplant. pmid:25588704
Posselt AM et al. Islet transplantation in type 1 diabetics using an immunosuppressive protocol based on the anti-LFA-1 antibody efalizumab. 2010 Am. J. Transplant. pmid:20659093
Teuteberg JJ et al. Alemtuzumab induction prior to cardiac transplantation with lower intensity maintenance immunosuppression: one-year outcomes. 2010 Am. J. Transplant. pmid:19889126
De Simone P et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. 2012 Am. J. Transplant. pmid:22882750
Echeverri GJ et al. Endoscopic gastric submucosal transplantation of islets (ENDO-STI): technique and initial results in diabetic pigs. 2009 Am. J. Transplant. pmid:19775318
Gaston RS et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the Opticept trial. 2009 Am. J. Transplant. pmid:19459794
Lake JR et al. Addition of MMF to dual immunosuppression does not increase the risk of malignant short-term death after liver transplantation. 2005 Am. J. Transplant. pmid:16303011
Irish WD et al. Cyclosporine versus tacrolimus treated liver transplant recipients with chronic hepatitis C: outcomes analysis of the UNOS/OPTN database. 2011 Am. J. Transplant. pmid:21564522
Margreiter R et al. Alemtuzumab (Campath-1H) and tacrolimus monotherapy after renal transplantation: results of a prospective randomized trial. 2008 Am. J. Transplant. pmid:18510632
Mandelbrot DA et al. Effect of Ramipril on Urinary Protein Excretion in Maintenance Renal Transplant Patients Converted to Sirolimus. 2015 Am. J. Transplant. pmid:26176342
Rogers J et al. Effect of ethnicity on outcome of simultaneous pancreas and kidney transplantation. 2003 Am. J. Transplant. pmid:14510702