tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Scorpion Stings D065008 1 associated lipids
Drug-Related Side Effects and Adverse Reactions D064420 3 associated lipids
Retrognathia D063173 1 associated lipids
End Stage Liver Disease D058625 1 associated lipids
Candidiasis, Invasive D058365 2 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Thrombotic Microangiopathies D057049 1 associated lipids
Central Serous Chorioretinopathy D056833 1 associated lipids
Leukoencephalopathies D056784 3 associated lipids
Netherton Syndrome D056770 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Invasive Pulmonary Aspergillosis D055744 1 associated lipids
Keratosis, Actinic D055623 3 associated lipids
Multiple Pulmonary Nodules D055613 2 associated lipids
Pancreatitis, Graft D055589 1 associated lipids
Failed Back Surgery Syndrome D055111 3 associated lipids
Primary Graft Dysfunction D055031 1 associated lipids
Idiopathic Interstitial Pneumonias D054988 1 associated lipids
Dendritic Cell Sarcoma, Interdigitating D054739 1 associated lipids
Precursor Cell Lymphoblastic Leukemia-Lymphoma D054198 10 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
Yasunami Y et al. FK506 as the sole immunosuppressive agent for prolongation of islet allograft survival in the rat. 1990 Transplantation pmid:1691535
D'Antiga L et al. Late cellular rejection in paediatric liver transplantation: aetiology and outcome. 2002 Transplantation pmid:11792983
Ferraris JR et al. Conversion from cyclosporine A to tacrolimus in pediatric kidney transplant recipients with chronic rejection: changes in the immune responses. 2004 Transplantation pmid:15084930
Shapiro R et al. Posttransplant lymphoproliferative disorders in adult and pediatric renal transplant patients receiving tacrolimus-based immunosuppression. 1999 Transplantation pmid:10628763
Andrés A et al. A randomized trial comparing renal function in older kidney transplant patients following delayed versus immediate tacrolimus administration. 2009 Transplantation pmid:19898206
Xu X et al. FKBP12 is the only FK506 binding protein mediating T-cell inhibition by the immunosuppressant FK506. 2002 Transplantation pmid:12085010
Straatman LP and Coles JG Pediatric utilization of rapamycin for severe cardiac allograft rejection. 2000 Transplantation pmid:10949201
Takatsuki M et al. Weaning of immunosuppression in living donor liver transplant recipients. 2001 Transplantation pmid:11502975
Fujii Y et al. Effect of a novel immunosuppressive agent, FK506, on mitogen-induced inositol phospholipid degradation in rat thymocytes. 1989 Transplantation pmid:2472025
Augustine JJ et al. Improved renal function after conversion from tacrolimus/sirolimus to tacrolimus/mycophenolate mofetil in kidney transplant recipients. 2006 Transplantation pmid:16612276
Brunet M et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. 2006 Transplantation pmid:16495801
Chen H et al. Compromised kidney graft rejection response in Vervet monkeys after withdrawal of immunosuppressants tacrolimus and sirolimus. 2000 Transplantation pmid:10836361
Hougardy JM et al. Conversion from Prograf to Advagraf among kidney transplant recipients results in sustained decrease in tacrolimus exposure. 2011 Transplantation pmid:21192316
Stevens C et al. The effects of immunosuppressive agents on in vitro production of human immunoglobulins. 1991 Transplantation pmid:1710843
Bayés B et al. Adiponectin and risk of new-onset diabetes mellitus after kidney transplantation. 2004 Transplantation pmid:15257035
Lake JR et al. The impact of immunosuppressive regimens on the cost of liver transplantation--results from the U.S. FK506 multicenter trial. 1995 Transplantation pmid:7482713
Stephen M et al. Immunosuppressive activity, lymphocyte subset analysis, and acute toxicity of FK-506 in the rat. A comparative and combination study with cyclosporine. 1989 Transplantation pmid:2463701
Tsamandas AC et al. Central venulitis in the allograft liver: a clinicopathologic study. 1997 Transplantation pmid:9256183
Wiesner RH A long-term comparison of tacrolimus (FK506) versus cyclosporine in liver transplantation: a report of the United States FK506 Study Group. 1998 Transplantation pmid:9734494