tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Uremia D014511 33 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Nocardia Infections D009617 6 associated lipids
Diarrhea D003967 32 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Graft Occlusion, Vascular D006083 11 associated lipids
Hypercalcemia D006934 13 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Bacterial Infections D001424 21 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Mouth Diseases D009059 5 associated lipids
Meningococcal Infections D008589 3 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Tümgör G et al. A case of uneventful ABO-incompatible liver transplantation from a deceased donor managed with routine immunosuppressive treatment. 2014 Turk J Gastroenterol pmid:25599790
Dinçkan A et al. Evaluation of the first 100 liver transplantations. 2008 Turk J Gastroenterol pmid:18386237
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Suzuki H et al. Induction of transplantation tolerance in adult rats by vascularized spleen transplantation. 1997 Transplantation pmid:9293881
Bayer ND et al. Association of metabolic syndrome with development of new-onset diabetes after transplantation. 2010 Transplantation pmid:20724958
Moxey-Mims MM Increased incidence of insulin-dependent diabetes mellitus in pediatric renal transplant patients receiving tacrolimus (FK506) 1999 Transplantation pmid:10440413
McGhee B et al. Therapeutic use of an extemporaneously prepared oral suspension of tacrolimus in pediatric patients. 1997 Transplantation pmid:9326429
Yoshimura N et al. The direct effect of FK506 and rapamycin on interleukin 1(beta) and immunoglobulin production in vitro. 1994 Transplantation pmid:7517078
Tuteja S et al. The effect of gut metabolism on tacrolimus bioavailability in renal transplant recipients. 2001 Transplantation pmid:11397967
Reichenspurner H et al. Optimization of the immunosuppressive protocol after lung transplantation. 1999 Transplantation pmid:10428269
Pilmore HL et al. Tacrolimus for the treatment of gout in renal transplantation: two case reports and review of the literature. 2001 Transplantation pmid:11726837
Ishizuka J et al. Effects of FK506 and cyclosporine on dynamic insulin secretion from isolated dog pancreatic islets. 1993 Transplantation pmid:7506454
Heilman RL et al. Impact of early conversion from tacrolimus to sirolimus on chronic allograft changes in kidney recipients on rapid steroid withdrawal. 2012 Transplantation pmid:22067270
Murase N et al. FK506 suppression of heart and liver allograft rejection. II: The induction of graft acceptance in rats. 1990 Transplantation pmid:1700504
Mourad G et al. Incidence of Posttransplantation Diabetes Mellitus in De Novo Kidney Transplant Recipients Receiving Prolonged-Release Tacrolimus-Based Immunosuppression With 2 Different Corticosteroid Minimization Strategies: ADVANCE, A Randomized Controlled Trial. 2017 Transplantation pmid:27547871
Kaplan B et al. Low bioavailability of cyclosporine microemulsion and tacrolimus in a small bowel transplant recipient: possible relationship to intestinal P-glycoprotein activity. 1999 Transplantation pmid:10075604
Heilman RL et al. Results of a prospective randomized trial of sirolimus conversion in kidney transplant recipients on early corticosteroid withdrawal. 2011 Transplantation pmid:21775930
Erden E et al. Plasma FK506 levels in patients with histopathologically documented renal allograft rejection. 1994 Transplantation pmid:7519801
Morikawa K et al. The distinct effects of FK506 on the activation, proliferation, and differentiation of human B lymphocytes. 1992 Transplantation pmid:1281561
Jain A et al. Conversion to neoral for neurotoxicity after primary adult liver transplantation under tacrolimus. 2000 Transplantation pmid:10653398
Yamazaki S et al. Transplantation-related thrombotic microangiopathy triggered by preemptive therapy for hepatitis C virus infection. 2008 Transplantation pmid:18852671
Stevens RB et al. A randomized 2×2 factorial trial, part 1: single-dose rabbit antithymocyte globulin induction may improve renal transplantation outcomes. 2015 Transplantation pmid:25083614
Ravaioli M et al. Immunosuppression Modifications Based on an Immune Response Assay: Results of a Randomized, Controlled Trial. 2015 Transplantation pmid:25757214
Ciancio G et al. The use of Campath-1H as induction therapy in renal transplantation: preliminary results. 2004 Transplantation pmid:15316372
Berg UB et al. Renal function before and long after liver transplantation in children. 2001 Transplantation pmid:11544422
Gruessner RW et al. Mycophenolate mofetil in pancreas transplantation. 1998 Transplantation pmid:9721799
Emond JC et al. Improved results of living-related liver transplantation with routine application in a pediatric program. 1993 Transplantation pmid:7682738
Kershner RP and Fitzsimmons WE Relationship of FK506 whole blood concentrations and efficacy and toxicity after liver and kidney transplantation. 1996 Transplantation pmid:8878385
Devlin J et al. Nitric oxide generation. A predictive parameter of acute allograft rejection. 1994 Transplantation pmid:7522365
Florescu DF et al. Adenovirus infections in pediatric small bowel transplant recipients. 2010 Transplantation pmid:20467354
Vafadari R et al. Inhibitory effect of tacrolimus on p38 mitogen-activated protein kinase signaling in kidney transplant recipients measured by whole-blood phosphospecific flow cytometry. 2012 Transplantation pmid:22643331
Morales JM et al. Improved renal function, with similar proteinuria, after two years of early tacrolimus withdrawal from a regimen of sirolimus plus tacrolimus. 2008 Transplantation pmid:18724234
Gallon LG et al. Long-term renal transplant function in recipient of simultaneous kidney and pancreas transplant maintained with two prednisone-free maintenance immunosuppressive combinations: tacrolimus/mycophenolate mofetil versus tacrolimus/sirolimus. 2007 Transplantation pmid:17519781
Dhar DK et al. The salutary effect of FK506 in ischemia-reperfusion injury of the canine liver. 1992 Transplantation pmid:1384188
Bashuda H et al. Induction of persistent allograft tolerance in the rat by combined treatment with anti-leukocyte function-associated antigen-1 and anti-intercellular adhesion molecule-1 monoclonal antibodies, donor-specific transfusion, and FK506. 1996 Transplantation pmid:8693525
Raggi MC et al. Customized mycophenolate dosing based on measuring inosine-monophosphate dehydrogenase activity significantly improves patients' outcomes after renal transplantation. 2010 Transplantation pmid:21076373
Ueki S et al. Control of allograft rejection by applying a novel nuclear factor-kappaB inhibitor, dehydroxymethylepoxyquinomicin. 2006 Transplantation pmid:17198266
Hughes JR et al. Blood levels of TGFbeta1 in liver transplant recipients receiving either tacrolimus or micro-emulsified cyclosporine. 1999 Transplantation pmid:10480422
Cacciarelli TV et al. Management of posttransplant lymphoproliferative disease in pediatric liver transplant recipients receiving primary tacrolimus (FK506) therapy. 1998 Transplantation pmid:9808490
Griffith BP et al. A prospective randomized trial of FK506 versus cyclosporine after human pulmonary transplantation. 1994 Transplantation pmid:7512292
Sun S et al. Effect of tacrolimus on hemodynamics and absorption of experimental small intestinal transplants. 1996 Transplantation pmid:8633368