tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Uremia D014511 33 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Nocardia Infections D009617 6 associated lipids
Diarrhea D003967 32 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Graft Occlusion, Vascular D006083 11 associated lipids
Hypercalcemia D006934 13 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Bacterial Infections D001424 21 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Mouth Diseases D009059 5 associated lipids
Meningococcal Infections D008589 3 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Kim EJ et al. Costimulation blockade alters germinal center responses and prevents antibody-mediated rejection. 2014 Am. J. Transplant. pmid:24354871
Frassetto LA et al. Immunosuppressant pharmacokinetics and dosing modifications in HIV-1 infected liver and kidney transplant recipients. 2007 Am. J. Transplant. pmid:17949460
Dugast E et al. Failure of Calcineurin Inhibitor (Tacrolimus) Weaning Randomized Trial in Long-Term Stable Kidney Transplant Recipients. 2016 Am. J. Transplant. pmid:27367750
de Fontbrune FS et al. Veno-occlusive disease of the liver after lung transplantation. 2007 Am. J. Transplant. pmid:17697264
Krenzien F et al. Age-Dependent Metabolic and Immunosuppressive Effects of Tacrolimus. 2017 Am. J. Transplant. pmid:27754593
Ekberg H et al. Calcineurin inhibitor minimization in the Symphony study: observational results 3 years after transplantation. 2009 Am. J. Transplant. pmid:19563339
ter Meulen CG et al. Steroid-withdrawal at 3 days after renal transplantation with anti-IL-2 receptor alpha therapy: a prospective, randomized, multicenter study. 2004 Am. J. Transplant. pmid:15084178
Mehra MR et al. Immunosuppression in cardiac transplantation: science, common sense and the heart of the matter. 2006 Am. J. Transplant. pmid:16686745
Grimm M et al. Superior prevention of acute rejection by tacrolimus vs. cyclosporine in heart transplant recipients--a large European trial. 2006 Am. J. Transplant. pmid:16686762
Hernández-Fisac I et al. Tacrolimus-induced diabetes in rats courses with suppressed insulin gene expression in pancreatic islets. 2007 Am. J. Transplant. pmid:17725683
Hamdy AF et al. Comparison of sirolimus with low-dose tacrolimus versus sirolimus-based calcineurin inhibitor-free regimen in live donor renal transplantation. 2005 Am. J. Transplant. pmid:16162204
Kaufman DB et al. Alemtuzumab induction and prednisone-free maintenance immunotherapy in kidney transplantation: comparison with basiliximab induction--long-term results. 2005 Am. J. Transplant. pmid:16162205
Mujtaba MA et al. Conversion from tacrolimus to belatacept to prevent the progression of chronic kidney disease in pancreas transplantation: case report of two patients. 2014 Am. J. Transplant. pmid:25179306
Schwarz A et al. Polyoma virus nephropathy in native kidneys after lung transplantation. 2005 Am. J. Transplant. pmid:16162212
Böger CA et al. Reverse diastolic intrarenal flow due to calcineurin inhibitor (CNI) toxicity. 2006 Am. J. Transplant. pmid:16889550
Tan HP et al. Living donor renal transplantation using alemtuzumab induction and tacrolimus monotherapy. 2006 Am. J. Transplant. pmid:16889606
Lucey MR et al. A comparison of tacrolimus and cyclosporine in liver transplantation: effects on renal function and cardiovascular risk status. 2005 Am. J. Transplant. pmid:15816894
Pillebout E et al. Renal histopathological lesions after orthotopic liver transplantation (OLT). 2005 Am. J. Transplant. pmid:15816895
Chisholm-Burns MA et al. Improving outcomes of renal transplant recipients with behavioral adherence contracts: a randomized controlled trial. 2013 Am. J. Transplant. pmid:23819827
Van Laecke S et al. Posttransplantation hypomagnesemia and its relation with immunosuppression as predictors of new-onset diabetes after transplantation. 2009 Am. J. Transplant. pmid:19624560
Pescovitz MD et al. A randomized, double-blind, pharmacokinetic study of oral maribavir with tacrolimus in stable renal transplant recipients. 2009 Am. J. Transplant. pmid:19663892
Mian AN et al. Mycoplasma hominis septic arthritis in a pediatric renal transplant recipient: case report and review of the literature. 2005 Am. J. Transplant. pmid:15636628
Gregoor PS and Weimar W Tacrolimus and pure red-cell aplasia. 2005 Am. J. Transplant. pmid:15636632
Gao R et al. Effects of immunosuppressive drugs on in vitro neogenesis of human islets: mycophenolate mofetil inhibits the proliferation of ductal cells. 2007 Am. J. Transplant. pmid:17391142
Rodriguez-Rodriguez AE et al. The higher diabetogenic risk of tacrolimus depends on pre-existing insulin resistance. A study in obese and lean Zucker rats. 2013 Am. J. Transplant. pmid:23651473
Tremblay S et al. A Steady-State Head-to-Head Pharmacokinetic Comparison of All FK-506 (Tacrolimus) Formulations (ASTCOFF): An Open-Label, Prospective, Randomized, Two-Arm, Three-Period Crossover Study. 2017 Am. J. Transplant. pmid:27340950
Neuberger JM et al. Delayed introduction of reduced-dose tacrolimus, and renal function in liver transplantation: the 'ReSpECT' study. 2009 Am. J. Transplant. pmid:19120077
Momper JD et al. The impact of conversion from prograf to generic tacrolimus in liver and kidney transplant recipients with stable graft function. 2011 Am. J. Transplant. pmid:21714845
Lemahieu WP et al. CYP3A4 and P-glycoprotein activity in healthy controls and transplant patients on cyclosporin vs. tacrolimus vs. sirolimus. 2004 Am. J. Transplant. pmid:15307840
Fan DM et al. Successful ABO-incompatible living-related intestinal transplantation: a 2-year follow-up. 2015 Am. J. Transplant. pmid:25808777
Luan FL et al. Comparative risk of impaired glucose metabolism associated with cyclosporine versus tacrolimus in the late posttransplant period. 2008 Am. J. Transplant. pmid:18786231
Woywodt A et al. Different preparations of tacrolimus and medication errors. 2008 Am. J. Transplant. pmid:18786238
Levi Z et al. Switching from tacrolimus to sirolimus halts the appearance of new sebaceous neoplasms in Muir-Torre syndrome. 2007 Am. J. Transplant. pmid:17229076
Mulay AV et al. Impact of immunosuppressive medication on the risk of renal allograft failure due to recurrent glomerulonephritis. 2009 Am. J. Transplant. pmid:19353768
Ogawa T et al. Rho-associated kinase inhibitor reduces tumor recurrence after liver transplantation in a rat hepatoma model. 2007 Am. J. Transplant. pmid:17229077
Miriuka SG et al. mTOR inhibition induces endothelial progenitor cell death. 2006 Am. J. Transplant. pmid:16796720
Bourdeaux C et al. Living-related versus deceased donor pediatric liver transplantation: a multivariate analysis of technical and immunological complications in 235 recipients. 2007 Am. J. Transplant. pmid:17173657
Mazariegos GV et al. Dendritic cell subset ratio in tolerant, weaning and non-tolerant liver recipients is not affected by extent of immunosuppression. 2005 Am. J. Transplant. pmid:15643991
Bahra M et al. MMF and calcineurin taper in recurrent hepatitis C after liver transplantation: impact on histological course. 2005 Am. J. Transplant. pmid:15644002
Rostaing L et al. Alefacept combined with tacrolimus, mycophenolate mofetil and steroids in de novo kidney transplantation: a randomized controlled trial. 2013 Am. J. Transplant. pmid:23730730
Levy G et al. REFINE: a randomized trial comparing cyclosporine A and tacrolimus on fibrosis after liver transplantation for hepatitis C. 2014 Am. J. Transplant. pmid:24456049
Triñanes J et al. Deciphering Tacrolimus-Induced Toxicity in Pancreatic β Cells. 2017 Am. J. Transplant. pmid:28432716
Posselt AM et al. Islet transplantation in type 1 diabetics using an immunosuppressive protocol based on the anti-LFA-1 antibody efalizumab. 2010 Am. J. Transplant. pmid:20659093
Ciancio G et al. Advantage of rapamycin over mycophenolate mofetil when used with tacrolimus for simultaneous pancreas kidney transplants: randomized, single-center trial at 10 years. 2012 Am. J. Transplant. pmid:22946986
Jacobson PA et al. Lower calcineurin inhibitor doses in older compared to younger kidney transplant recipients yield similar troughs. 2012 Am. J. Transplant. pmid:22947444
De Simone P et al. Everolimus with reduced tacrolimus improves renal function in de novo liver transplant recipients: a randomized controlled trial. 2012 Am. J. Transplant. pmid:22882750
Echeverri GJ et al. Endoscopic gastric submucosal transplantation of islets (ENDO-STI): technique and initial results in diabetic pigs. 2009 Am. J. Transplant. pmid:19775318
Gaston RS et al. Fixed- or controlled-dose mycophenolate mofetil with standard- or reduced-dose calcineurin inhibitors: the Opticept trial. 2009 Am. J. Transplant. pmid:19459794
Gatault P et al. Reduction of Extended-Release Tacrolimus Dose in Low-Immunological-Risk Kidney Transplant Recipients Increases Risk of Rejection and Appearance of Donor-Specific Antibodies: A Randomized Study. 2017 Am. J. Transplant. pmid:27862923
Brennan DC et al. Incidence of BK with tacrolimus versus cyclosporine and impact of preemptive immunosuppression reduction. 2005 Am. J. Transplant. pmid:15707414