tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Abnormalities, Multiple D000015 13 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Acne Vulgaris D000152 35 associated lipids
Adenocarcinoma D000230 166 associated lipids
Adrenal Insufficiency D000309 3 associated lipids
Akinetic Mutism D000405 1 associated lipids
Albuminuria D000419 18 associated lipids
Alopecia D000505 14 associated lipids
Alopecia Areata D000506 6 associated lipids
Alzheimer Disease D000544 76 associated lipids
Amenorrhea D000568 4 associated lipids
Amputation, Traumatic D000673 2 associated lipids
Anemia D000740 21 associated lipids
Anemia, Aplastic D000741 6 associated lipids
Anemia, Hemolytic D000743 4 associated lipids
Anemia, Hemolytic, Autoimmune D000744 5 associated lipids
Anemia, Refractory D000753 3 associated lipids
Anemia, Refractory, with Excess of Blasts D000754 2 associated lipids
Aneurysm, Dissecting D000784 2 associated lipids
Angiolymphoid Hyperplasia with Eosinophilia D000796 1 associated lipids
Angioedema D000799 6 associated lipids
Anus Diseases D001004 3 associated lipids
Apraxias D001072 1 associated lipids
Arm Injuries D001134 1 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Ascites D001201 25 associated lipids
Ataxia D001259 20 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Bacterial Infections D001424 21 associated lipids
Balanitis D001446 4 associated lipids
Beckwith-Wiedemann Syndrome D001506 1 associated lipids
Behcet Syndrome D001528 7 associated lipids
Biliary Fistula D001658 13 associated lipids
Biliary Tract Neoplasms D001661 7 associated lipids
Blepharitis D001762 4 associated lipids
Blindness D001766 6 associated lipids
Body Weight D001835 333 associated lipids
Bone Diseases D001847 4 associated lipids
Bradycardia D001919 13 associated lipids
Brain Diseases D001927 27 associated lipids
Brain Edema D001929 20 associated lipids
Bronchiolitis D001988 6 associated lipids
Bronchiolitis Obliterans D001989 8 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Schmidt LE et al. Relationship between postoperative erythromycin breath test and early morbidity in liver transplant recipients. 2003 Transplantation pmid:12883193
Troppmann C et al. Higher surgical wound complication rates with sirolimus immunosuppression after kidney transplantation: a matched-pair pilot study. 2003 Transplantation pmid:12883205
Gaynor JJ and Ciancio G The Importance of Using Serially Measured Tacrolimus Clearance Values, Especially During the Early Posttransplantation Period. 2018 Transplantation pmid:29271869
Ellis D et al. Epstein-Barr virus-related disorders in children undergoing renal transplantation with tacrolimus-based immunosuppression. 1999 Transplantation pmid:10532541
Molano RD et al. Long-term islet allograft survival in nonobese diabetic mice treated with tacrolimus, rapamycin, and anti-interleukin-2 antibody. 2003 Transplantation pmid:12811239
Waldman WJ et al. Inhibition of angiogenesis-related endothelial activity by the experimental immunosuppressive agent leflunomide. 2001 Transplantation pmid:11707749
Miroux C et al. In vitro effects of cyclosporine A and tacrolimus on regulatory T-cell proliferation and function. 2012 Transplantation pmid:22743548
Bierer BE et al. Mechanisms of immunosuppression by FK506. Preservation of T cell transmembrane signal transduction. 1990 Transplantation pmid:1694317
Jindal RM et al. Effect of deoxyspergualin on the endocrine function of the rat pancreas. 1993 Transplantation pmid:7504347
Eberhard OK et al. How best to use tacrolimus (FK506) for treatment of steroid- and OKT3-resistant rejection after renal transplantation. 1996 Transplantation pmid:8629294
Millis JM et al. Tacrolimus for primary treatment of steroid-resistant hepatic allograft rejection. 1996 Transplantation pmid:8629298
de Sandes-Freitas TV et al. Subclinical Lesions and Donor-Specific Antibodies in Kidney Transplant Recipients Receiving Tacrolimus-Based Immunosuppressive Regimen Followed by Early Conversion to Sirolimus. 2015 Transplantation pmid:25929604
Jain A et al. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone and mycophenolate mofetil in primary adult liver transplantation: a single center report. 2001 Transplantation pmid:11579306
Sheiner PA et al. Increased risk of early rejection correlates with recovery of CD3 cell count after liver transplant in patients receiving OKT3 induction. 1997 Transplantation pmid:9355846
Conrotto D et al. Dramatic increase of tacrolimus plasma concentration during topical treatment for oral graft-versus-host disease. 2006 Transplantation pmid:17060865
Reding R et al. Conversion from cyclosporine to FK506 for salvage of immunocompromised pediatric liver allografts. Efficacy, toxicity, and dose regimen in 23 children. 1994 Transplantation pmid:7507272
Hill CC et al. Penile prosthesis surgery in the immunosuppressed patient. 1993 Transplantation pmid:7692633
Reyes J et al. Expressive dysphasia possibly related to FK506 in two liver transplant recipients. 1990 Transplantation pmid:1701571
Egidi MF and Gaber AO Outcomes of African-American kidney-transplant recipients treated with sirolimus, tacrolimus, and corticosteroids. 2003 Transplantation pmid:12605133
Osowski CL et al. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. 1996 Transplantation pmid:8610430
Watanabe M et al. Efficacy of DHMEQ, a NF-κB inhibitor, in islet transplantation: II. Induction DHMEQ treatment ameliorates subsequent alloimmune responses and permits long-term islet allograft acceptance. 2013 Transplantation pmid:23860082
Jurcevic S et al. A new enzyme-linked immunosorbent assay to measure anti-endothelial antibodies after cardiac transplantation demonstrates greater inhibition of antibody formation by tacrolimus compared with cyclosporine. 1998 Transplantation pmid:9603168
Shapiro AM et al. Defining optimal immunosuppression for islet transplantation based on reduced diabetogenicity in canine islet autografts. 2002 Transplantation pmid:12490784
Aulagnon F et al. Diarrhea after kidney transplantation: a new look at a frequent symptom. 2014 Transplantation pmid:25073040
Tokita D et al. High PD-L1/CD86 ratio on plasmacytoid dendritic cells correlates with elevated T-regulatory cells in liver transplant tolerance. 2008 Transplantation pmid:18301333
Niioka T et al. Comparison of pharmacokinetics and pharmacogenetics of once- and twice-daily tacrolimus in the early stage after renal transplantation. 2012 Transplantation pmid:23073468
Ekberg H et al. The challenge of achieving target drug concentrations in clinical trials: experience from the Symphony study. 2009 Transplantation pmid:19424036
Woodle ES et al. FK506: inhibition of humoral mechanisms of hepatic allograft rejection. 1992 Transplantation pmid:1379749
Sureshkumar KK and Chopra B In search of an optimal induction agent in kidney transplantation. 2014 Transplantation pmid:24978038
Tan HP et al. Pediatric living donor kidney transplantation under alemtuzumab pretreatment and tacrolimus monotherapy: 4-year experience. 2008 Transplantation pmid:19104412
Devlin J and Williams R Transplantation for fulminant hepatic failure: comparing tacrolimus versus cyclosporine for immunosuppression and the outcome in elective transplants. European FK506 Liver Study Group. 1996 Transplantation pmid:8932266
Curran CF et al. Acute overdoses of tacrolimus. 1996 Transplantation pmid:8932293
Reyes J et al. Long-term results after conversion from cyclosporine to tacrolimus in pediatric liver transplantation for acute and chronic rejection. 2000 Transplantation pmid:10910279
Fealy MJ et al. Association of down-regulation of cytokine activity with rat hind limb allograft survival. 1995 Transplantation pmid:7539555
Yamauchi A et al. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. 2002 Transplantation pmid:12352921
Ekser B et al. Hepatic function after genetically engineered pig liver transplantation in baboons. 2010 Transplantation pmid:20606605
Woodle ES et al. Liver transplantation in the first three months of life. 1998 Transplantation pmid:9753340
Radkowski M et al. Detection of hepatitis C virus replication in peripheral blood mononuclear cells after orthotopic liver transplantation. 1998 Transplantation pmid:9753352
Ciancio G et al. A randomized long-term trial of tacrolimus and sirolimus versus tacrolimus and mycophenolate mofetil versus cyclosporine (NEORAL) and sirolimus in renal transplantation. I. Drug interactions and rejection at one year. 2004 Transplantation pmid:14742989
van Hooff JP et al. Tacrolimus and posttransplant diabetes mellitus in renal transplantation. 2005 Transplantation pmid:15940032
Gillard P et al. Early alteration of kidney function in nonuremic type 1 diabetic islet transplant recipients under tacrolimus-mycophenolate therapy. 2014 Transplantation pmid:24770614
Bazerbachi F et al. Pancreas-after-kidney versus synchronous pancreas-kidney transplantation: comparison of intermediate-term results. 2013 Transplantation pmid:23183776
Ekberg H et al. Relationship of tacrolimus exposure and mycophenolate mofetil dose with renal function after renal transplantation. 2011 Transplantation pmid:21562449
Rezeig MA et al. Kaposi's sarcoma in liver transplant recipients on FK506: two case reports. 1997 Transplantation pmid:9175820
Markus PM et al. Prevention of graft-versus-host disease following allogeneic bone marrow transplantation in rats using FK506. 1991 Transplantation pmid:1718063
Hricik DE et al. Withdrawal of steroid therapy in African American kidney transplant recipients receiving sirolimus and tacrolimus. 2003 Transplantation pmid:14508357
Foster RD et al. Long-term acceptance of composite tissue allografts through mixed chimerism and CD28 blockade. 2003 Transplantation pmid:14508367
Langrehr JM et al. Clinical course, morphology, and treatment of chronically rejecting small bowel allografts. 1993 Transplantation pmid:7679526
Uemoto S et al. Experience with FK506 in living-related liver transplantation. 1993 Transplantation pmid:7679528
Mor E et al. Reversal of gastrointestinal toxicity associated with long-term FK506 immunosuppression by conversion to cyclosporine in liver transplant recipients. 1994 Transplantation pmid:7513098