tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Scorpion Stings D065008 1 associated lipids
Drug-Related Side Effects and Adverse Reactions D064420 3 associated lipids
Retrognathia D063173 1 associated lipids
End Stage Liver Disease D058625 1 associated lipids
Candidiasis, Invasive D058365 2 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Thrombotic Microangiopathies D057049 1 associated lipids
Central Serous Chorioretinopathy D056833 1 associated lipids
Leukoencephalopathies D056784 3 associated lipids
Netherton Syndrome D056770 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Invasive Pulmonary Aspergillosis D055744 1 associated lipids
Keratosis, Actinic D055623 3 associated lipids
Multiple Pulmonary Nodules D055613 2 associated lipids
Pancreatitis, Graft D055589 1 associated lipids
Failed Back Surgery Syndrome D055111 3 associated lipids
Primary Graft Dysfunction D055031 1 associated lipids
Idiopathic Interstitial Pneumonias D054988 1 associated lipids
Dendritic Cell Sarcoma, Interdigitating D054739 1 associated lipids
Precursor Cell Lymphoblastic Leukemia-Lymphoma D054198 10 associated lipids
Posterior Leukoencephalopathy Syndrome D054038 1 associated lipids
Dysuria D053159 1 associated lipids
Nocturia D053158 1 associated lipids
Delayed Graft Function D051799 2 associated lipids
Renal Insufficiency D051437 8 associated lipids
Lymphohistiocytosis, Hemophagocytic D051359 1 associated lipids
Granulomatosis, Orofacial D051261 2 associated lipids
Atherosclerosis D050197 85 associated lipids
Dyslipidemias D050171 7 associated lipids
Diabetes Complications D048909 4 associated lipids
Hepatic Insufficiency D048550 1 associated lipids
Colitis, Collagenous D046729 1 associated lipids
Protoporphyria, Erythropoietic D046351 1 associated lipids
Coproporphyria, Hereditary D046349 1 associated lipids
Ileus D045823 3 associated lipids
Intestinal Volvulus D045822 1 associated lipids
Cholecystolithiasis D041761 2 associated lipids
Mastocytosis, Cutaneous D034701 1 associated lipids
Hypoalbuminemia D034141 1 associated lipids
Hyperuricemia D033461 4 associated lipids
Papillomavirus Infections D030361 4 associated lipids
Denys-Drash Syndrome D030321 1 associated lipids
Pulmonary Disease, Chronic Obstructive D029424 16 associated lipids
Polyomavirus Infections D027601 1 associated lipids
Coronary Stenosis D023921 6 associated lipids
Lacerations D022125 1 associated lipids
Brachial Plexus Neuritis D020968 2 associated lipids
Neuroaspergillosis D020953 2 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Central Nervous System Viral Diseases D020805 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Schmidt LE et al. Relationship between postoperative erythromycin breath test and early morbidity in liver transplant recipients. 2003 Transplantation pmid:12883193
Moss MC et al. Lithium use for bipolar disorder post renal transplant: is mood stabilization without toxicity possible? 2014 Transplantation pmid:24492429
Fridell JA et al. Steroid withdrawal for pancreas after kidney transplantation in recipients on maintenance prednisone immunosuppression. 2006 Transplantation pmid:16906038
Boldt A et al. The influence of immunosuppressive drugs on T- and B-cell apoptosis via p53-mediated pathway in vitro and in vivo. 2006 Transplantation pmid:16906043
Narayanan M et al. Outcomes in African American kidney transplant patients receiving tacrolimus and mycophenolic acid immunosuppression. 2013 Transplantation pmid:23423268
Reutzel-Selke A et al. Short-term immunosuppressive treatment of the donor ameliorates consequences of ischemia/ reperfusion injury and long-term graft function in renal allografts from older donors. 2003 Transplantation pmid:12811235
Gaber AO et al. Acute rejection characteristics from a prospective, randomized, double-blind, placebo-controlled multicenter trial of early corticosteroid withdrawal. 2013 Transplantation pmid:23423269
Molano RD et al. Long-term islet allograft survival in nonobese diabetic mice treated with tacrolimus, rapamycin, and anti-interleukin-2 antibody. 2003 Transplantation pmid:12811239
Trancassini M et al. Microbiologic investigation on patients with cystic fibrosis subjected to bilateral lung transplantation. 2001 Transplantation pmid:11707748
Waldman WJ et al. Inhibition of angiogenesis-related endothelial activity by the experimental immunosuppressive agent leflunomide. 2001 Transplantation pmid:11707749
Murase N et al. Suppression of allograft rejection with FK506. I. Prolonged cardiac and liver survival in rats following short-course therapy. 1990 Transplantation pmid:1696405
Woodle ES et al. FK506--reversal of humorally mediated cardiac allograft rejection in the presence of preformed anti-class I antibody. 1993 Transplantation pmid:7504346
Jindal RM et al. Effect of deoxyspergualin on the endocrine function of the rat pancreas. 1993 Transplantation pmid:7504347
Millis JM et al. Tacrolimus for primary treatment of steroid-resistant hepatic allograft rejection. 1996 Transplantation pmid:8629298
Jain A et al. A prospective randomized trial of tacrolimus and prednisone versus tacrolimus, prednisone and mycophenolate mofetil in primary adult liver transplantation: a single center report. 2001 Transplantation pmid:11579306
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
van Hooff JP Pneumocystis carinii pneumonia after renal transplantation. 1997 Transplantation pmid:9158038
Hsiau M et al. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. 2011 Transplantation pmid:21857278
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Roberts JP et al. Reversal of chronic rejection after treatment failure with FK506 and RS61443. 1993 Transplantation pmid:7692634
Kitayama T et al. Facilitation of tacrolimus-induced heart-allograft acceptability by pretransplant host treatment with granulocyte colony-stimulating factor: interleukin-12-restricted suppression of intragraft monokine mRNA expression. 2003 Transplantation pmid:12605126
Storb R et al. FK-506 and methotrexate prevent graft-versus-host disease in dogs given 9.2 Gy total body irradiation and marrow grafts from unrelated dog leukocyte antigen-nonidentical donors. 1993 Transplantation pmid:7692635
Cacciarelli TV et al. Oral tacrolimus (FK506) induction therapy in pediatric orthotopic liver transplantation. 1996 Transplantation pmid:8610416
Egidi MF and Gaber AO Outcomes of African-American kidney-transplant recipients treated with sirolimus, tacrolimus, and corticosteroids. 2003 Transplantation pmid:12605133
Osowski CL et al. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. 1996 Transplantation pmid:8610430
Yu S et al. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. 2006 Transplantation pmid:16421475
Borrows R et al. Five years of steroid sparing in renal transplantation with tacrolimus and mycophenolate mofetil. 2006 Transplantation pmid:16421488
Macphee IA et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. 2002 Transplantation pmid:12490779
Shapiro AM et al. Defining optimal immunosuppression for islet transplantation based on reduced diabetogenicity in canine islet autografts. 2002 Transplantation pmid:12490784
Ho ET et al. Once-daily extended-release versus twice-daily standard-release tacrolimus in kidney transplant recipients: a systematic review. 2013 Transplantation pmid:23542469
Porrini E et al. Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. 2008 Transplantation pmid:18431233
Veroux M et al. Impact of conversion to a once daily tacrolimus-based regimen in kidney transplant recipients with gastrointestinal complications. 2012 Transplantation pmid:22298033
Devlin J and Williams R Transplantation for fulminant hepatic failure: comparing tacrolimus versus cyclosporine for immunosuppression and the outcome in elective transplants. European FK506 Liver Study Group. 1996 Transplantation pmid:8932266
MacDonald AS Management strategies for nephrotoxicity. 2000 Transplantation pmid:10910262
Reyes J et al. Long-term results after conversion from cyclosporine to tacrolimus in pediatric liver transplantation for acute and chronic rejection. 2000 Transplantation pmid:10910279
Fealy MJ et al. Association of down-regulation of cytokine activity with rat hind limb allograft survival. 1995 Transplantation pmid:7539555
Higgins RM et al. Conversion from tacrolimus to cyclosporine in stable renal transplant patients: safety, metabolic changes, and pharmacokinetic comparison. 2000 Transplantation pmid:10836393
Garton T Nefazodone and cyp450 3a4 interactions with cyclosporine and tacrolimus1. 2002 Transplantation pmid:12352898
Cantarovich D et al. Switching from cyclosporine to tacrolimus in patients with chronic transplant dysfunction or cyclosporine-induced adverse events. 2005 Transplantation pmid:15714172
Yamauchi A et al. Neurotoxicity induced by tacrolimus after liver transplantation: relation to genetic polymorphisms of the ABCB1 (MDR1) gene. 2002 Transplantation pmid:12352921
Radkowski M et al. Detection of hepatitis C virus replication in peripheral blood mononuclear cells after orthotopic liver transplantation. 1998 Transplantation pmid:9753352
Peng Y et al. Donor-derived mesenchymal stem cells combined with low-dose tacrolimus prevent acute rejection after renal transplantation: a clinical pilot study. 2013 Transplantation pmid:23263506
Kuypers DR et al. Improved adherence to tacrolimus once-daily formulation in renal recipients: a randomized controlled trial using electronic monitoring. 2013 Transplantation pmid:23263559
White M et al. Subclinical inflammation and prothrombotic state in heart transplant recipients: impact of cyclosporin microemulsion vs. tacrolimus. 2006 Transplantation pmid:17006323
Günther M et al. Rapid decline of antibodies after hepatitis A immunization in liver and renal transplant recipients. 2001 Transplantation pmid:11233913
Rezeig MA et al. Kaposi's sarcoma in liver transplant recipients on FK506: two case reports. 1997 Transplantation pmid:9175820
Foster RD et al. Long-term acceptance of composite tissue allografts through mixed chimerism and CD28 blockade. 2003 Transplantation pmid:14508367
Uemoto S et al. Experience with FK506 in living-related liver transplantation. 1993 Transplantation pmid:7679528
Talento A et al. A single administration of LFA-1 antibody confers prolonged allograft survival. 1993 Transplantation pmid:7679531
Mor E et al. Reversal of gastrointestinal toxicity associated with long-term FK506 immunosuppression by conversion to cyclosporine in liver transplant recipients. 1994 Transplantation pmid:7513098