tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Uremia D014511 33 associated lipids
Colitis, Ulcerative D003093 24 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Nocardia Infections D009617 6 associated lipids
Diarrhea D003967 32 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Graft Occlusion, Vascular D006083 11 associated lipids
Hypercalcemia D006934 13 associated lipids
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Bacterial Infections D001424 21 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Mouth Diseases D009059 5 associated lipids
Meningococcal Infections D008589 3 associated lipids
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Mycobacterium Infections D009164 7 associated lipids
Sarcoidosis D012507 13 associated lipids
Hepatolenticular Degeneration D006527 3 associated lipids
Hyperglycemia D006943 21 associated lipids
Carcinoma, Squamous Cell D002294 14 associated lipids
Skin Neoplasms D012878 12 associated lipids
Burns D002056 34 associated lipids
Inflammation D007249 119 associated lipids
Inflammatory Bowel Diseases D015212 9 associated lipids
Reperfusion Injury D015427 65 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Fatty Liver D005234 48 associated lipids
Cataract D002386 34 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Precancerous Conditions D011230 48 associated lipids
Postoperative Complications D011183 5 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Surgical Wound Infection D013530 7 associated lipids
Neoplasm Recurrence, Local D009364 5 associated lipids
Osteonecrosis D010020 5 associated lipids
Hypotension D007022 41 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Connor A et al. Generic tacrolimus in renal transplantation: trough blood concentration as a surrogate for drug exposure. 2012 Transplantation pmid:23318306
Suzuki H et al. Induction of transplantation tolerance in adult rats by vascularized spleen transplantation. 1997 Transplantation pmid:9293881
Plock JA et al. Adipose- and Bone Marrow-Derived Mesenchymal Stem Cells Prolong Graft Survival in Vascularized Composite Allotransplantation. 2015 Transplantation pmid:26102613
Stevens RB et al. Randomized trial of single-dose versus divided-dose rabbit anti-thymocyte globulin induction in renal transplantation: an interim report. 2008 Transplantation pmid:18497677
Gurk-Turner C et al. Thymoglobulin dose optimization for induction therapy in high risk kidney transplant recipients. 2008 Transplantation pmid:18497682
Khanafer A et al. Increased nitric oxide production during acute rejection in kidney transplantation: a useful marker to aid in the diagnosis of rejection. 2007 Transplantation pmid:17876269
Egawa H et al. FK506 conversion therapy in pediatric liver transplantation. 1994 Transplantation pmid:7513911
Arns W et al. Pharmacokinetics and Clinical Outcomes of Generic Tacrolimus (Hexal) Versus Branded Tacrolimus in De Novo Kidney Transplant Patients: A Multicenter, Randomized Trial. 2017 Transplantation pmid:28658202
Taber DJ et al. Tacrolimus Trough Concentration Variability and Disparities in African American Kidney Transplantation. 2017 Transplantation pmid:28658199
Yang CW et al. Pharmacological preconditioning with low-dose cyclosporine or FK506 reduces subsequent ischemia/reperfusion injury in rat kidney. 2001 Transplantation pmid:11740384
Benito N et al. Alternariosis after liver transplantation. 2001 Transplantation pmid:11740399
Diémé B et al. Assessing the metabolic effects of calcineurin inhibitors in renal transplant recipients by urine metabolic profiling. 2014 Transplantation pmid:24598938
Moxey-Mims MM Increased incidence of insulin-dependent diabetes mellitus in pediatric renal transplant patients receiving tacrolimus (FK506) 1999 Transplantation pmid:10440413
Hirose R et al. Experience with daclizumab in liver transplantation: renal transplant dosing without calcineurin inhibitors is insufficient to prevent acute rejection in liver transplantation. 2000 Transplantation pmid:10670644
Han DH et al. Effect of sirolimus on calcineurin inhibitor-induced nephrotoxicity using renal expression of KLOTHO, an antiaging gene. 2010 Transplantation pmid:20562737
Schäffer MR et al. Tacrolimus impairs wound healing: a possible role of decreased nitric oxide synthesis. 1998 Transplantation pmid:9539093
Budde K et al. Conversion from mycophenolate mofetil to enteric-coated mycophenolate sodium in maintenance renal transplant recipients receiving tacrolimus: clinical, pharmacokinetic, and pharmacodynamic outcomes. 2007 Transplantation pmid:17318074
Firdaous I et al. Pediatric intravenous FK506--how much are we really infusing? 1994 Transplantation pmid:7517079
Manez R et al. Rejection and hepatitis in liver transplants. 1994 Transplantation pmid:7517080
Cao W et al. Effects of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Inhibition of basic fibroblast growth factor and platelet-derived growth factor action and antagonism of rapamycin by FK506. 1995 Transplantation pmid:7532879
Tuteja S et al. The effect of gut metabolism on tacrolimus bioavailability in renal transplant recipients. 2001 Transplantation pmid:11397967
Stifft F et al. Lower variability in 24-hour exposure during once-daily compared to twice-daily tacrolimus formulation in kidney transplantation. 2014 Transplantation pmid:24686426
Reichenspurner H et al. Optimization of the immunosuppressive protocol after lung transplantation. 1999 Transplantation pmid:10428269
Pilmore HL et al. Tacrolimus for the treatment of gout in renal transplantation: two case reports and review of the literature. 2001 Transplantation pmid:11726837
Sampaio MS et al. Association of immunosuppressive maintenance regimens with posttransplant lymphoproliferative disorder in kidney transplant recipients. 2012 Transplantation pmid:22129761
Demmers MW et al. Limited efficacy of immunosuppressive drugs on CD8+ T cell-mediated and natural killer cell-mediated lysis of human renal tubular epithelial cells. 2014 Transplantation pmid:24704664
Soccal PM et al. Improvement of drug-induced chronic renal failure in lung transplantation. 1999 Transplantation pmid:10428288
Jain A et al. Long-term follow-up after liver transplantation for alcoholic liver disease under tacrolimus. 2000 Transplantation pmid:11087149
Shibutani S et al. Effects of immunosuppressants on induction of regulatory cells after intratracheal delivery of alloantigen. 2005 Transplantation pmid:15849542
Lee CM et al. Outcomes in diabetic patients after simultaneous pancreas-kidney versus kidney alone transplantation. 1997 Transplantation pmid:9371670
Koenen HJ et al. Superior T-cell suppression by rapamycin and FK506 over rapamycin and cyclosporine A because of abrogated cytotoxic T-lymphocyte induction, impaired memory responses, and persistent apoptosis. 2003 Transplantation pmid:12792519
Migita K et al. FK506 potentiates steroid-induced T-cell apoptosis. 1997 Transplantation pmid:9371682
Tory R et al. Tacrolimus-induced elevation in plasma triglyceride concentrations after administration to renal transplant patients is partially due to a decrease in lipoprotein lipase activity and plasma concentrations. 2009 Transplantation pmid:19584682
Manitpisitkul W et al. Maintenance immunosuppressive agents as risk factors for BK virus nephropathy: a case-control study. 2009 Transplantation pmid:19584685
Fujimura Y and Owen RL Tacrolimus (FK506) and cyclosporine reduce the uptake and transport of particles into rabbit Peyer's patches. 2002 Transplantation pmid:11965030
Jain A et al. Pharmacokinetics of tacrolimus in living donor liver transplant and deceased donor liver transplant recipients. 2008 Transplantation pmid:18347534
Ishizuka J et al. Effects of FK506 and cyclosporine on dynamic insulin secretion from isolated dog pancreatic islets. 1993 Transplantation pmid:7506454
Dhar DK et al. Effective prevention of ischemic injury of the dearterialized canine liver by FK506 pretreatment. 1993 Transplantation pmid:7506456
Fabrega AJ et al. Enhancement of allograft survival by single intraoperative donor-specific blood transfusion combined with FK506. 1993 Transplantation pmid:7506458
Weiler N et al. Early steroid-free immunosuppression with FK506 after liver transplantation: long-term results of a prospectively randomized double-blinded trial. 2010 Transplantation pmid:21048536
Murase N et al. FK506 suppression of heart and liver allograft rejection. II: The induction of graft acceptance in rats. 1990 Transplantation pmid:1700504
Burke MD et al. Inhibition of the metabolism of cyclosporine by human liver microsomes by FK506. 1990 Transplantation pmid:1700507
Robertsen I et al. Use of generic tacrolimus in elderly renal transplant recipients: precaution is needed. 2015 Transplantation pmid:25148382
Kaplan B et al. Low bioavailability of cyclosporine microemulsion and tacrolimus in a small bowel transplant recipient: possible relationship to intestinal P-glycoprotein activity. 1999 Transplantation pmid:10075604
Barraclough KA et al. NR1I2 polymorphisms are related to tacrolimus dose-adjusted exposure and BK viremia in adult kidney transplantation. 2012 Transplantation pmid:23095803
Gaber AO et al. Comparison of sirolimus plus tacrolimus versus sirolimus plus cyclosporine in high-risk renal allograft recipients: results from an open-label, randomized trial. 2008 Transplantation pmid:19005398
Luan FL et al. Rapamycin blocks tumor progression: unlinking immunosuppression from antitumor efficacy. 2002 Transplantation pmid:12042641
Hoogduijn MJ et al. Susceptibility of human mesenchymal stem cells to tacrolimus, mycophenolic acid, and rapamycin. 2008 Transplantation pmid:19005411
Erden E et al. Plasma FK506 levels in patients with histopathologically documented renal allograft rejection. 1994 Transplantation pmid:7519801
Morikawa K et al. The distinct effects of FK506 on the activation, proliferation, and differentiation of human B lymphocytes. 1992 Transplantation pmid:1281561
Moutabarrik A et al. FK506-induced kidney tubular cell injury. 1992 Transplantation pmid:1281562
Serón D et al. Immunophenotype of infiltrating cells in protocol renal allograft biopsies from tacrolimus-versus cyclosporine-treated patients. 2007 Transplantation pmid:17353788
McDevitt-Potter LM et al. A multicenter experience with generic tacrolimus conversion. 2011 Transplantation pmid:21788920
Vennarecci G et al. Apoptosis and rejection in rat intestinal transplantation: correlation with FK506 doses and donor specific bone marrow infusions. 2001 Transplantation pmid:11455248
Imado T et al. Effect of FK506 on donor T-cell functions that are responsible for graft-versus-host disease and graft-versus-leukemia effect. 2004 Transplantation pmid:14966413
Roth D et al. Primary immunosuppression with tacrolimus and mycophenolate mofetil for renal allograft recipients. 1998 Transplantation pmid:9458023
Gill JS et al. Screening for de novo anti-human leukocyte antigen antibodies in nonsensitized kidney transplant recipients does not predict acute rejection. 2010 Transplantation pmid:20098280
Wallia A et al. Posttransplant hyperglycemia is associated with increased risk of liver allograft rejection. 2010 Transplantation pmid:20098286
Schulman SL et al. Interaction between tacrolimus and chloramphenicol in a renal transplant recipient. 1998 Transplantation pmid:9625026
Zhao W et al. Pharmacokinetic interaction between tacrolimus and amlodipine in a renal transplant child. 2012 Transplantation pmid:22450597
Pascual J et al. Alemtuzumab induction and antibody-mediated kidney rejection after simultaneous pancreas-kidney transplantation. 2009 Transplantation pmid:19136902
Ciancio G et al. A randomized trial of three renal transplant induction antibodies: early comparison of tacrolimus, mycophenolate mofetil, and steroid dosing, and newer immune-monitoring. 2005 Transplantation pmid:16123718
Vossen M et al. Bone quality in swine composite tissue allografts: effects of combination immunotherapy. 2005 Transplantation pmid:16123723
Berg UB et al. Renal function before and long after liver transplantation in children. 2001 Transplantation pmid:11544422
Aw MM et al. Calcineurin-inhibitor related nephrotoxicity- reversibility in paediatric liver transplant recipients. 2001 Transplantation pmid:11544444
Irish W et al. Three-year posttransplant graft survival in renal-transplant patients with graft function at 6 months receiving tacrolimus or cyclosporine microemulsion within a triple-drug regimen. 2003 Transplantation pmid:14688516
Akst LM et al. Induction of tolerance in a rat model of laryngeal transplantation. 2003 Transplantation pmid:14688529
Lauria MW et al. Metabolic long-term follow-up of functioning simultaneous pancreas-kidney transplantation versus pancreas transplantation alone: insights and limitations. 2010 Transplantation pmid:20061923
Gruessner RW et al. Mycophenolate mofetil in pancreas transplantation. 1998 Transplantation pmid:9721799
Pacifico L et al. Tacrolimus and food allergy. 2003 Transplantation pmid:14688538
Gullestad L et al. Everolimus with reduced calcineurin inhibitor in thoracic transplant recipients with renal dysfunction: a multicenter, randomized trial. 2010 Transplantation pmid:20061999
Emond JC et al. Improved results of living-related liver transplantation with routine application in a pediatric program. 1993 Transplantation pmid:7682738
Terakura M et al. Lymphoid/nonlymphoid compartmentalization of donor leukocyte chimerism in rat recipients of heart allografts, with or without adjunct bone marrow. 1998 Transplantation pmid:9721804
Kai N et al. Prevention of insulitis and diabetes in nonobese diabetic mice by administration of FK506. 1993 Transplantation pmid:7682740
Chisholm MA et al. Coadministration of tacrolimus with anti-acid drugs. 2003 Transplantation pmid:12973105
Koch R et al. Cyclosporine A-induced achalasia-like esophageal motility disorder in a liver transplant recipient: successful conversion to tacrolimus. 2003 Transplantation pmid:12973123
Ciancio G et al. Review of major clinical trials with mycophenolate mofetil in renal transplantation. 2005 Transplantation pmid:16251852
Kershner RP and Fitzsimmons WE Relationship of FK506 whole blood concentrations and efficacy and toxicity after liver and kidney transplantation. 1996 Transplantation pmid:8878385
Nolan TJ and Schad GA Tacrolimus allows autoinfective development of the parasitic nematode Strongyloides stercoralis. 1996 Transplantation pmid:8878405
Devlin J et al. Nitric oxide generation. A predictive parameter of acute allograft rejection. 1994 Transplantation pmid:7522365
Jordan ML et al. Tacrolimus rescue therapy for renal allograft rejection--five-year experience. 1997 Transplantation pmid:9020321
Higgins R et al. Rises and falls in donor-specific and third-party HLA antibody levels after antibody incompatible transplantation. 2009 Transplantation pmid:19300192
Mazariegos GV et al. Weaning of immunosuppression in liver transplant recipients. 1997 Transplantation pmid:9020325
Steiner RW Steroid withdrawal in kidney transplantation: the subgroup fallacy. 2011 Transplantation pmid:21336084
Dhar DK et al. The salutary effect of FK506 in ischemia-reperfusion injury of the canine liver. 1992 Transplantation pmid:1384188
Bashuda H et al. Induction of persistent allograft tolerance in the rat by combined treatment with anti-leukocyte function-associated antigen-1 and anti-intercellular adhesion molecule-1 monoclonal antibodies, donor-specific transfusion, and FK506. 1996 Transplantation pmid:8693525
Ericzon BG et al. FK506-induced impairment of glucose metabolism in the primate--studies in pancreatic transplant recipients and in nontransplanted animals. 1992 Transplantation pmid:1384189
Abu-Elmagd K et al. The effect of graft function on FK506 plasma levels, dosages, and renal function, with particular reference to the liver. 1991 Transplantation pmid:1713365
Hughes JR et al. Blood levels of TGFbeta1 in liver transplant recipients receiving either tacrolimus or micro-emulsified cyclosporine. 1999 Transplantation pmid:10480422
Cacciarelli TV et al. Management of posttransplant lymphoproliferative disease in pediatric liver transplant recipients receiving primary tacrolimus (FK506) therapy. 1998 Transplantation pmid:9808490
Nakazawa Y et al. Relationship between in vivo FK506 clearance and in vitro 13-demethylation activity in living-related liver transplantation. 1998 Transplantation pmid:9808496
de Jonge H et al. Reduced C0 concentrations and increased dose requirements in renal allograft recipients converted to the novel once-daily tacrolimus formulation. 2010 Transplantation pmid:20592652
Krähenbühl S et al. Serious interaction between mibefradil and tacrolimus. 1998 Transplantation pmid:9808502
Macphee IA et al. Tacrolimus pharmacogenetics: the CYP3A5*1 allele predicts low dose-normalized tacrolimus blood concentrations in whites and South Asians. 2005 Transplantation pmid:15729180
Shibasaki S et al. Immunosuppressive effects of DTCM-G, a novel inhibitor of the mTOR downstream signaling pathway. 2013 Transplantation pmid:23269193
Griffith BP et al. A prospective randomized trial of FK506 versus cyclosporine after human pulmonary transplantation. 1994 Transplantation pmid:7512292
Jordan ML et al. FK506 "rescue" for resistant rejection of renal allografts under primary cyclosporine immunosuppression. 1994 Transplantation pmid:7512293
Sun S et al. Effect of tacrolimus on hemodynamics and absorption of experimental small intestinal transplants. 1996 Transplantation pmid:8633368
Kashu Y et al. The effect of combination splenectomy and low-dose FK506 therapy on graft survival after liver allograft transplantation in rats. 1996 Transplantation pmid:8633382
Yoshimura N et al. A case report of pregnancy in renal transplant recipient treated with FK506 (tacrolimus). 1996 Transplantation pmid:8633388