tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Keratosis, Actinic D055623 3 associated lipids
Invasive Pulmonary Aspergillosis D055744 1 associated lipids
Latent Tuberculosis D055985 1 associated lipids
Netherton Syndrome D056770 1 associated lipids
Leukoencephalopathies D056784 3 associated lipids
Central Serous Chorioretinopathy D056833 1 associated lipids
Thrombotic Microangiopathies D057049 1 associated lipids
Acute Kidney Injury D058186 34 associated lipids
Candidiasis, Invasive D058365 2 associated lipids
End Stage Liver Disease D058625 1 associated lipids
Retrognathia D063173 1 associated lipids
Drug-Related Side Effects and Adverse Reactions D064420 3 associated lipids
Scorpion Stings D065008 1 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Benito N et al. Alternariosis after liver transplantation. 2001 Transplantation pmid:11740399
Schäffer MR et al. Tacrolimus impairs wound healing: a possible role of decreased nitric oxide synthesis. 1998 Transplantation pmid:9539093
Demmers MW et al. Limited efficacy of immunosuppressive drugs on CD8+ T cell-mediated and natural killer cell-mediated lysis of human renal tubular epithelial cells. 2014 Transplantation pmid:24704664
Manitpisitkul W et al. Maintenance immunosuppressive agents as risk factors for BK virus nephropathy: a case-control study. 2009 Transplantation pmid:19584685
Fujimura Y and Owen RL Tacrolimus (FK506) and cyclosporine reduce the uptake and transport of particles into rabbit Peyer's patches. 2002 Transplantation pmid:11965030
Tanabe M et al. Combined immunosuppressive therapy with low dose FK506 and antimetabolites in rat allogeneic heart transplantation. 1994 Transplantation pmid:7518619
Vennarecci G et al. Apoptosis and rejection in rat intestinal transplantation: correlation with FK506 doses and donor specific bone marrow infusions. 2001 Transplantation pmid:11455248
Imado T et al. Effect of FK506 on donor T-cell functions that are responsible for graft-versus-host disease and graft-versus-leukemia effect. 2004 Transplantation pmid:14966413
Wallia A et al. Posttransplant hyperglycemia is associated with increased risk of liver allograft rejection. 2010 Transplantation pmid:20098286
Schulman SL et al. Interaction between tacrolimus and chloramphenicol in a renal transplant recipient. 1998 Transplantation pmid:9625026
Calandra S Sinus arrest during tacrolimus treatment: was the QT interval prolonged? 1998 Transplantation pmid:9721813
Ciancio G et al. Review of major clinical trials with mycophenolate mofetil in renal transplantation. 2005 Transplantation pmid:16251852
Tamura K et al. Transcriptional inhibition of insulin by FK506 and possible involvement of FK506 binding protein-12 in pancreatic beta-cell. 1995 Transplantation pmid:7539960
Valdivia LA et al. Dendritic cell replacement in long-surviving liver and cardiac xenografts. 1993 Transplantation pmid:7689265
Mazariegos GV et al. Weaning of immunosuppression in liver transplant recipients. 1997 Transplantation pmid:9020325
Lake JR et al. The impact of immunosuppressive regimens on the cost of liver transplantation--results from the U.S. FK506 multicenter trial. 1995 Transplantation pmid:7482713
Stephen M et al. Immunosuppressive activity, lymphocyte subset analysis, and acute toxicity of FK-506 in the rat. A comparative and combination study with cyclosporine. 1989 Transplantation pmid:2463701
de Jonge H et al. Reduced C0 concentrations and increased dose requirements in renal allograft recipients converted to the novel once-daily tacrolimus formulation. 2010 Transplantation pmid:20592652
Krähenbühl S et al. Serious interaction between mibefradil and tacrolimus. 1998 Transplantation pmid:9808502
Shibasaki S et al. Immunosuppressive effects of DTCM-G, a novel inhibitor of the mTOR downstream signaling pathway. 2013 Transplantation pmid:23269193