tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Hyperlipidemias D006949 73 associated lipids
Shock, Septic D012772 11 associated lipids
Ileal Neoplasms D007078 2 associated lipids
Cough D003371 19 associated lipids
Paraproteinemias D010265 2 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Translocation, Genetic D014178 20 associated lipids
Catalepsy D002375 30 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Ovarian Cysts D010048 4 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Andrades KM et al. Modulation of Candida albicans virulence by antirejection immunosuppressant drugs. 2013 Transplantation pmid:23380869
Faguer S et al. Rituximab therapy for acute humoral rejection after kidney transplantation. 2007 Transplantation pmid:17496547
Rodrigo E et al. Within-Patient Variability in Tacrolimus Blood Levels Predicts Kidney Graft Loss and Donor-Specific Antibody Development. 2016 Transplantation pmid:26703349
Boukriche Y et al. Severe axonal polyneuropathy after a FK506 overdosage in a lung transplant recipient. 2001 Transplantation pmid:11740402
Pescovitz MD et al. Prospective observational study of sirolimus as primary immunosuppression after renal transplantation. 2009 Transplantation pmid:19855247
Miroux C et al. In vitro effects of cyclosporine A and tacrolimus on regulatory T-cell proliferation and function. 2012 Transplantation pmid:22743548
Larsen JL et al. Tacrolimus and sirolimus cause insulin resistance in normal sprague dawley rats. 2006 Transplantation pmid:16926589
Winkler ME et al. Successful pregnancy in a patient after liver transplantation maintained on FK 506. 1993 Transplantation pmid:7506460
Suzuki S et al. Pure red cell aplasia induced by FK506. 1996 Transplantation pmid:8607191
Busuttil RW et al. General guidelines for the use of tacrolimus in adult liver transplant patients. 1996 Transplantation pmid:8607197
de Graav GN et al. A Randomized Controlled Clinical Trial Comparing Belatacept With Tacrolimus After De Novo Kidney Transplantation. 2017 Transplantation pmid:28403127
Watanabe M et al. Efficacy of DHMEQ, a NF-κB inhibitor, in islet transplantation: II. Induction DHMEQ treatment ameliorates subsequent alloimmune responses and permits long-term islet allograft acceptance. 2013 Transplantation pmid:23860082
Atkison PR et al. Arteritis and increased intracellular calcium as a possible mechanism for tacrolimus-related cardiac toxicity in a pediatric transplant recipient. 1997 Transplantation pmid:9311719
Yamamoto S et al. FK778 and FK506 combination therapy to control acute rejection after rat liver allotransplantation. 2004 Transplantation pmid:15591950
Tan HP et al. Living-related donor renal transplantation in HIV+ recipients using alemtuzumab preconditioning and steroid-free tacrolimus monotherapy: a single center preliminary experience. 2004 Transplantation pmid:15591960
Gregory CR et al. Treatment with rapamycin and mycophenolic acid reduces arterial intimal thickening produced by mechanical injury and allows endothelial replacement. 1995 Transplantation pmid:7533955
Higgins RM et al. Acute rejection after renal transplantation is reduced by approximately 50% by prior therapeutic blood transfusions, even in tacrolimus-treated patients. 2004 Transplantation pmid:14966430
Mahé E et al. Drug-induced hypersensitivity syndrome associated with primary Epstein-Barr virus and human herpesvirus 6 infections in a child intestinal transplant recipient. 2004 Transplantation pmid:14966435
Gallon L et al. ACE gene D/D genotype as a risk factor for chronic nephrotoxicity from calcineurin inhibitors in liver transplant recipients. 2006 Transplantation pmid:16477235
Pruvot FR and Noel C Comment on "Pregnancy after liver transplantation under tacrolimus" by Jain et al. 1998 Transplantation pmid:9625033
Boillot O et al. Reversal of early acute rejection with increased doses of tacrolimus in liver transplantation: a pilot study. 1998 Transplantation pmid:9825815
Sanchez EQ et al. Predicting renal failure after liver transplantation from measured glomerular filtration rate: review of up to 15 years of follow-up. 2010 Transplantation pmid:20098288
Niioka T et al. Comparison of pharmacokinetics and pharmacogenetics of once- and twice-daily tacrolimus in the early stage after renal transplantation. 2012 Transplantation pmid:23073468
Shackleton CR et al. Lack of correlation between the magnitude of preservation injury and the incidence of acute rejection, need for OKT3, and conversion to FK506 in cyclosporine-treated primary liver allograft recipients. 1995 Transplantation pmid:7570950
Swinnen LJ et al. Prospective study of sequential reduction in immunosuppression, interferon alpha-2B, and chemotherapy for posttransplantation lymphoproliferative disorder. 2008 Transplantation pmid:18645482
Sureshkumar KK and Chopra B In search of an optimal induction agent in kidney transplantation. 2014 Transplantation pmid:24978038
Welberry Smith MP and Baker RJ The author's reply. 2014 Transplantation pmid:24978039
Pascual M et al. Plasma exchange and tacrolimus-mycophenolate rescue for acute humoral rejection in kidney transplantation. 1998 Transplantation pmid:9869086
Buell JF et al. Malignancy after transplantation. 2005 Transplantation pmid:16251858
Hariharan S Case 2: strategies to minimize the use of calcineurin inhibitors (CNIs). 2002 Transplantation pmid:12357988
Strumph P et al. The effect of FK506 on glycemic response as assessed by the hyperglycemic clamp technique. 1995 Transplantation pmid:7542815
Zaltzman JS A comparison of short-term exposure of once-daily extended release tacrolimus and twice-daily cyclosporine on renal function in healthy volunteers. 2010 Transplantation pmid:21166111
Stevens C et al. The effects of immunosuppressive agents on in vitro production of human immunoglobulins. 1991 Transplantation pmid:1710843
Aw MM et al. Basiliximab (Simulect) for the treatment of steroid-resistant rejection in pediatric liver transpland recipients: a preliminary experience. 2003 Transplantation pmid:12660504
Charpentier B et al. A three-arm study comparing immediate tacrolimus therapy with antithymocyte globulin induction therapy followed by tacrolimus or cyclosporine A in adult renal transplant recipients. 2003 Transplantation pmid:12660513
Anil Kumar MS et al. Comparison of steroid avoidance in tacrolimus/mycophenolate mofetil and tacrolimus/sirolimus combination in kidney transplantation monitored by surveillance biopsy. 2005 Transplantation pmid:16210969
van Boekel GA et al. Effect of mild diarrhea on tacrolimus exposure. 2012 Transplantation pmid:22955188
Ellis D et al. Renal transplantation in children managed with lymphocyte depleting agents and low-dose maintenance tacrolimus monotherapy. 2007 Transplantation pmid:17589338
Arai K et al. Limb allografts in rats immunosuppressed with FK506. I. Reversal of rejection and indefinite survival. 1989 Transplantation pmid:2479130
MacDonald AS Impact of immunosuppressive therapy on hypertension. 2000 Transplantation pmid:11152235
Brito-Costa A et al. Factors Associated With Changes in Body Composition Shortly After Orthotopic Liver Transplantation: The Potential Influence of Immunosuppressive Agents. 2016 Transplantation pmid:27136260
Gruessner RW et al. Portal donor-specific blood transfusion and mycophenolate mofetil allow steroid avoidance and tacrolimus dose reduction with sustained levels of chimerism in a pig model of intestinal transplantation. 2004 Transplantation pmid:15239611
Gralla J and Wiseman AC The impact of IL2ra induction therapy in kidney transplantation using tacrolimus- and mycophenolate-based immunosuppression. 2010 Transplantation pmid:20595929
Sher LS et al. Efficacy of tacrolimus as rescue therapy for chronic rejection in orthotopic liver transplantation: a report of the U.S. Multicenter Liver Study Group. 1997 Transplantation pmid:9256184
Yuzawa K and Fukao K Topical FK506 ointment for skin grafting. 1998 Transplantation pmid:9565111
Opelz G and Döhler B Association of mismatches for HLA-DR with incidence of posttransplant hip fracture in kidney transplant recipients. 2011 Transplantation pmid:21452411
Veenhof H et al. Clinical Validation of Simultaneous Analysis of Tacrolimus, Cyclosporine A, and Creatinine in Dried Blood Spots in Kidney Transplant Patients. 2017 Transplantation pmid:27906832
MacPhee IA and Holt DW A pharmacogenetic strategy for immunosuppression based on the CYP3A5 genotype. 2008 Transplantation pmid:18212618
Rayar M et al. High Intrapatient Variability of Tacrolimus Exposure in the Early Period After Liver Transplantation Is Associated With Poorer Outcomes. 2018 Transplantation pmid:29315140
Tourret J et al. Immunosuppressive Treatment Alters Secretion of Ileal Antimicrobial Peptides and Gut Microbiota, and Favors Subsequent Colonization by Uropathogenic Escherichia coli. 2017 Transplantation pmid:27681266