tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Respiration Disorders D012120 5 associated lipids
Respiratory Insufficiency D012131 10 associated lipids
Respiratory Tract Neoplasms D012142 2 associated lipids
Retinoblastoma D012175 12 associated lipids
Rhabdomyolysis D012206 9 associated lipids
Rheumatoid Nodule D012218 1 associated lipids
Rosacea D012393 13 associated lipids
Rotavirus Infections D012400 1 associated lipids
Rupture D012421 2 associated lipids
Sarcoidosis D012507 13 associated lipids
Sarcoma, Kaposi D012514 6 associated lipids
Osteosarcoma D012516 50 associated lipids
Scalp Dermatoses D012536 11 associated lipids
Sclerosis D012598 5 associated lipids
Dermatitis, Seborrheic D012628 10 associated lipids
Seizures D012640 87 associated lipids
Shock D012769 11 associated lipids
Shock, Septic D012772 11 associated lipids
Sinusitis D012852 9 associated lipids
Skin Diseases, Vesiculobullous D012872 5 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Fredericks S et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. 2006 Transplantation pmid:16969296
Gralla J and Wiseman AC Tacrolimus/sirolimus versus tacrolimus/mycophenolate in kidney transplantation: improved 3-year graft and patient survival in recent era. 2009 Transplantation pmid:19502965
Garcia-Criado FJ et al. Tacrolimus (FK506) down-regulates free radical tissue levels, serum cytokines, and neutrophil infiltration after severe liver ischemia. 1997 Transplantation pmid:9293871
Suzuki H et al. Induction of transplantation tolerance in adult rats by vascularized spleen transplantation. 1997 Transplantation pmid:9293881
Satterthwaite R et al. Incidence of new-onset hypercholesterolemia in renal transplant patients treated with FK506 or cyclosporine. 1998 Transplantation pmid:9484771
Lee D et al. Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression. 2017 Transplantation pmid:27779572
Wozniak LJ et al. Donor-specific HLA Antibodies Are Associated With Late Allograft Dysfunction After Pediatric Liver Transplantation. 2015 Transplantation pmid:26038872
Kuypers DR et al. Maintenance immunosuppressive agents as risk factors for BK virus nephropathy: the need for true drug exposure measurements. 2010 Transplantation pmid:20555228
Moxey-Mims MM Increased incidence of insulin-dependent diabetes mellitus in pediatric renal transplant patients receiving tacrolimus (FK506) 1999 Transplantation pmid:10440413
Guethoff S et al. Ten-year results of a randomized trial comparing tacrolimus versus cyclosporine a in combination with mycophenolate mofetil after heart transplantation. 2013 Transplantation pmid:23423270
Miyakoshi S et al. Tacrolimus as prophylaxis for acute graft-versus-host disease in reduced intensity cord blood transplantation for adult patients with advanced hematologic diseases. 2007 Transplantation pmid:17700155
Naesens M et al. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. 2007 Transplantation pmid:17700162
Pratschke J et al. Treatment of cyclosporine-related adverse effects by conversion to tacrolimus after liver transplantation. 1997 Transplantation pmid:9326428
Huang E et al. Alemtuzumab induction in deceased donor kidney transplantation. 2007 Transplantation pmid:17984833
Kato T et al. Randomized trial of steroid-free induction versus corticosteroid maintenance among orthotopic liver transplant recipients with hepatitis C virus: impact on hepatic fibrosis progression at one year. 2007 Transplantation pmid:17984834
High KP The antimicrobial activities of cyclosporine, FK506, and rapamycin. 1994 Transplantation pmid:7517076
Propper DJ et al. FK506--its influence on anti-class 1 MHC alloantibody responses to blood transfusions. 1990 Transplantation pmid:1696409
Maruyama M et al. Effect of FK506 treatment on allocytolytic T lymphocyte induction in vivo: differential effects of FK506 on L3T4+ and Ly2+ T cells. 1990 Transplantation pmid:1696410
Tuteja S et al. The effect of gut metabolism on tacrolimus bioavailability in renal transplant recipients. 2001 Transplantation pmid:11397967
Reichenspurner H et al. Optimization of the immunosuppressive protocol after lung transplantation. 1999 Transplantation pmid:10428269
Pilmore HL et al. Tacrolimus for the treatment of gout in renal transplantation: two case reports and review of the literature. 2001 Transplantation pmid:11726837
Ishizuka J et al. Effects of FK506 and cyclosporine on dynamic insulin secretion from isolated dog pancreatic islets. 1993 Transplantation pmid:7506454
Wang SC et al. A dual mechanism of immunosuppression by FK-506. Differential suppression of IL-4 and IL-10 levels in T helper 2 cells. 1993 Transplantation pmid:7692640
Shapiro R et al. Pediatric renal transplantation under tacrolimus-based immunosuppression. 1999 Transplantation pmid:10075598
Mor E et al. Reversal of severe FK506 side effects by conversion to cyclosporine-based immunosuppression. 1994 Transplantation pmid:7519800
Erden E et al. Plasma FK506 levels in patients with histopathologically documented renal allograft rejection. 1994 Transplantation pmid:7519801
Jain A et al. Conversion to neoral for neurotoxicity after primary adult liver transplantation under tacrolimus. 2000 Transplantation pmid:10653398
Textor SC et al. Systemic and renal hemodynamic differences between FK506 and cyclosporine in liver transplant recipients. 1993 Transplantation pmid:7685934
Arzouk N et al. Interaction between tacrolimus and fumagillin in two kidney transplant recipients. 2006 Transplantation pmid:16421493
Kandula P et al. Impact of tacrolimus-sirolimus maintenance immunosuppression on proteinuria and kidney function in pancreas transplant alone recipients. 2012 Transplantation pmid:23037007
First MR et al. New-onset diabetes after transplantation (NODAT): an evaluation of definitions in clinical trials. 2013 Transplantation pmid:23619735
Ninova D et al. Acute nephrotoxicity of tacrolimus and sirolimus in renal isografts: differential intragraft expression of transforming growth factor-beta1 and alpha-smooth muscle actin. 2004 Transplantation pmid:15316360
Ciancio G et al. The use of Campath-1H as induction therapy in renal transplantation: preliminary results. 2004 Transplantation pmid:15316372
Berg UB et al. Renal function before and long after liver transplantation in children. 2001 Transplantation pmid:11544422
Murase N et al. Hamster-to-rat heart and liver xenotransplantation with FK506 plus antiproliferative drugs. 1993 Transplantation pmid:7682735
Gruessner RW et al. Mycophenolate mofetil in pancreas transplantation. 1998 Transplantation pmid:9721799
Emond JC et al. Improved results of living-related liver transplantation with routine application in a pediatric program. 1993 Transplantation pmid:7682738
Kershner RP and Fitzsimmons WE Relationship of FK506 whole blood concentrations and efficacy and toxicity after liver and kidney transplantation. 1996 Transplantation pmid:8878385
Devlin J et al. Nitric oxide generation. A predictive parameter of acute allograft rejection. 1994 Transplantation pmid:7522365
Markus PM et al. Effects of in vivo treatment with FK506 on natural killer cells in rats. 1991 Transplantation pmid:1707562
Vincenti F et al. A long-term comparison of tacrolimus (FK506) and cyclosporine in kidney transplantation: evidence for improved allograft survival at five years. 2002 Transplantation pmid:11907427
Shaefer MS et al. Falsely elevated FK-506 levels caused by sampling through central venous catheters. 1993 Transplantation pmid:7689264
Valdivia LA et al. Dendritic cell replacement in long-surviving liver and cardiac xenografts. 1993 Transplantation pmid:7689265
Vafadari R et al. Pharmacodynamic analysis of tofacitinib and basiliximab in kidney allograft recipients. 2012 Transplantation pmid:22960764
Farley DE et al. The effect of two new immunosuppressive agents, FK506 and didemnin B, in murine pregnancy. 1991 Transplantation pmid:1713360
Vathsala A et al. The immunosuppressive antagonism of low doses of FK506 and cyclosporine. 1991 Transplantation pmid:1713361
Hughes JR et al. Blood levels of TGFbeta1 in liver transplant recipients receiving either tacrolimus or micro-emulsified cyclosporine. 1999 Transplantation pmid:10480422
Cacciarelli TV et al. Management of posttransplant lymphoproliferative disease in pediatric liver transplant recipients receiving primary tacrolimus (FK506) therapy. 1998 Transplantation pmid:9808490
Wissing KM et al. Effect of atorvastatin therapy and conversion to tacrolimus on hypercholesterolemia and endothelial dysfunction after renal transplantation. 2006 Transplantation pmid:17006324
Griffith BP et al. A prospective randomized trial of FK506 versus cyclosporine after human pulmonary transplantation. 1994 Transplantation pmid:7512292