tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Neovascularization, Pathologic D009389 39 associated lipids
Adenocarcinoma D000230 166 associated lipids
Dermatitis, Contact D003877 59 associated lipids
Bacterial Infections D001424 21 associated lipids
Pain D010146 64 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Mouth Diseases D009059 5 associated lipids
Meningococcal Infections D008589 3 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Therapondos G et al. Cardiac hypertrophy in liver transplant recipients: tacrolimus, cyclosporine or both? 2003 Transplantation pmid:12883220
Pascual J et al. Three-year observational follow-up of a multicenter, randomized trial on tacrolimus-based therapy with withdrawal of steroids or mycophenolate mofetil after renal transplant. 2006 Transplantation pmid:16861942
Asberg A et al. Calcineurin inhibitor avoidance with daclizumab, mycophenolate mofetil, and prednisolone in DR-matched de novo kidney transplant recipients. 2006 Transplantation pmid:16861943
Migita K et al. FK506 markedly enhances apoptosis of antigen-stimulated peripheral T cells by down-regulation of Bcl-xL. 1999 Transplantation pmid:10532544
Egawa H et al. FK506 conversion therapy in pediatric liver transplantation. 1994 Transplantation pmid:7513911
Boleslawski E et al. Defective inhibition of peripheral CD8+ T cell IL-2 production by anti-calcineurin drugs during acute liver allograft rejection. 2004 Transplantation pmid:15223897
Hostettler KE et al. Cyclosporine A mediates fibroproliferation through epithelial cells. 2004 Transplantation pmid:15223908
Bilolo KK et al. Synergistic effects of malononitrilamides (FK778, FK779) with tacrolimus (FK506) in prevention of acute heart and kidney allograft rejection and reversal of ongoing heart allograft rejection in the rat. 2003 Transplantation pmid:12811249
Firdaous I et al. Pediatric intravenous FK506--how much are we really infusing? 1994 Transplantation pmid:7517079
Manez R et al. Rejection and hepatitis in liver transplants. 1994 Transplantation pmid:7517080
Bierer BE et al. Mechanisms of immunosuppression by FK506. Preservation of T cell transmembrane signal transduction. 1990 Transplantation pmid:1694317
Cao W et al. Effects of rapamycin on growth factor-stimulated vascular smooth muscle cell DNA synthesis. Inhibition of basic fibroblast growth factor and platelet-derived growth factor action and antagonism of rapamycin by FK506. 1995 Transplantation pmid:7532879
Eiras G et al. Species differences in sensitivity of T lymphocytes to immunosuppressive effects of FK 506. 1990 Transplantation pmid:1694318
Chaftari AM et al. Comparison of posaconazole versus weekly amphotericin B lipid complex for the prevention of invasive fungal infections in hematopoietic stem-cell transplantation. 2012 Transplantation pmid:22814329
Morrissey PE et al. Correlation of clinical outcomes after tacrolimus conversion for resistant kidney rejection or cyclosporine toxicity with pathologic staging by the Banff criteria. 1997 Transplantation pmid:9089224
Dhar DK et al. Effective prevention of ischemic injury of the dearterialized canine liver by FK506 pretreatment. 1993 Transplantation pmid:7506456
Tsuchiya T et al. Comparison of pharmacokinetics and pathology for low-dose tacrolimus once-daily and twice-daily in living kidney transplantation: prospective trial in once-daily versus twice-daily tacrolimus. 2013 Transplantation pmid:23792649
Karlsson H and Nässberger L FK506 suppresses the mitogen-induced increase in lymphocyte adhesiveness to endothelial cells, but does not affect endothelial cell activation in response to inflammatory stimuli. 1997 Transplantation pmid:9355847
Burke MD et al. Inhibition of the metabolism of cyclosporine by human liver microsomes by FK506. 1990 Transplantation pmid:1700507
Størset E et al. Improved Tacrolimus Target Concentration Achievement Using Computerized Dosing in Renal Transplant Recipients--A Prospective, Randomized Study. 2015 Transplantation pmid:25886918
Burroughs TE et al. Increasing incidence of new-onset diabetes after transplant among pediatric renal transplant patients. 2009 Transplantation pmid:19667939
Mittal SK et al. Increased interleukin-10 production without expansion of CD4+CD25+ T-regulatory cells in early stable renal transplant patients on calcineurin inhibitors. 2009 Transplantation pmid:19667950
Moutabarrik A et al. FK506-induced kidney tubular cell injury. 1992 Transplantation pmid:1281562
Kihm LP et al. Acute effects of calcineurin inhibitors on kidney allograft microperfusion visualized by contrast-enhanced sonography. 2012 Transplantation pmid:22470107
Hoogtanders K et al. Dried blood spot measurement of tacrolimus is promising for patient monitoring. 2007 Transplantation pmid:17264824
Kung L and Halloran PF Immunophilins may limit calcineurin inhibition by cyclosporine and tacrolimus at high drug concentrations. 2000 Transplantation pmid:10933159
Beatty PR et al. Effect of cyclosporine and tacrolimus on the growth of Epstein-Barr virus-transformed B-cell lines. 1998 Transplantation pmid:9603175
Maes BD et al. Differences in gastric motor activity in renal transplant recipients treated with FK-506 versus cyclosporine. 1999 Transplantation pmid:10589943
Gruber SA et al. Initial results of solitary pancreas transplants performed without regard to donor/recipient HLA mismatching. 2000 Transplantation pmid:10933170
Shapiro R et al. Alopecia as a consequence of tacrolimus therapy. 1998 Transplantation pmid:9603186
Fernandez LA et al. The effects of maintenance doses of FK506 versus cyclosporin A on glucose and lipid metabolism after orthotopic liver transplantation. 1999 Transplantation pmid:10589951
Mehra MR et al. Ethnic disparity in clinical outcome after heart transplantation is abrogated using tacrolimus and mycophenolate mofetil-based immunosuppression. 2002 Transplantation pmid:12490790
Xie Y et al. Delayed Donor Bone Marrow Infusion Induces Liver Transplant Tolerance. 2017 Transplantation pmid:28187014
Sato T et al. Diabetes mellitus after transplant: relationship to pretransplant glucose metabolism and tacrolimus or cyclosporine A-based therapy. 2003 Transplantation pmid:14627910
Vignali D et al. IL-7 Mediated Homeostatic Expansion of Human CD4+CD25+FOXP3+ Regulatory T Cells After Depletion With Anti-CD25 Monoclonal Antibody. 2016 Transplantation pmid:27306531
de Fijter JW Tacrolimus dosing in mycophenolate-treated patients--can we get away with less? 2011 Transplantation pmid:21654351
Nankivell BJ et al. Calcineurin Inhibitor Nephrotoxicity Through the Lens of Longitudinal Histology: Comparison of Cyclosporine and Tacrolimus Eras. 2016 Transplantation pmid:27306529
De Ruvo N et al. Preliminary results of a "prope" tolerogenic regimen with thymoglobulin pretreatment and hepatitis C virus recurrence in liver transplantation. 2005 Transplantation pmid:16003226
Reich DJ et al. Mycophenolate mofetil for renal dysfunction in liver transplant recipients on cyclosporine or tacrolimus: randomized, prospective, multicenter pilot study results. 2005 Transplantation pmid:16003228
Ericzon BG et al. FK506-induced impairment of glucose metabolism in the primate--studies in pancreatic transplant recipients and in nontransplanted animals. 1992 Transplantation pmid:1384189
Guasch A et al. Assessment of efficacy and safety of FK778 in comparison with standard care in renal transplant recipients with untreated BK nephropathy. 2010 Transplantation pmid:20811320
Wennberg L et al. Preapheresis immunosuppressive induction: necessary or harmful? 2007 Transplantation pmid:18162987
Ciancio G et al. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. 2004 Transplantation pmid:14742990
Azzola A et al. Everolimus and mycophenolate mofetil are potent inhibitors of fibroblast proliferation after lung transplantation. 2004 Transplantation pmid:14742993
Nankivell BJ et al. Oral cyclosporine but not tacrolimus reduces renal transplant blood flow. 2004 Transplantation pmid:15167607
Hoerning A et al. Pharmacodynamic monitoring of mammalian target of rapamycin inhibition by phosphoflow cytometric determination of p70S6 kinase activity. 2015 Transplantation pmid:25099702
Jordan ML et al. FK506 "rescue" for resistant rejection of renal allografts under primary cyclosporine immunosuppression. 1994 Transplantation pmid:7512293
Kashu Y et al. The effect of combination splenectomy and low-dose FK506 therapy on graft survival after liver allograft transplantation in rats. 1996 Transplantation pmid:8633382
Yoshimura N et al. A case report of pregnancy in renal transplant recipient treated with FK506 (tacrolimus). 1996 Transplantation pmid:8633388
Zhang W et al. Isoglycyrrhizinate Magnesium Enhances Hepatoprotective Effect of FK506 on Ischemia-Reperfusion Injury Through HMGB1 Inhibition in a Rat Model of Liver Transplantation. 2017 Transplantation pmid:28885495