tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Hypersensitivity D006967 22 associated lipids
Hyperglycemia D006943 21 associated lipids
Bacterial Infections D001424 21 associated lipids
Vomiting D014839 21 associated lipids
Anemia D000740 21 associated lipids
Brain Edema D001929 20 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Translocation, Genetic D014178 20 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
HIV Infections D015658 20 associated lipids
Gastrointestinal Diseases D005767 20 associated lipids
Ataxia D001259 20 associated lipids
Parkinsonian Disorders D020734 20 associated lipids
Pregnancy Complications D011248 19 associated lipids
Cough D003371 19 associated lipids
Nephritis D009393 19 associated lipids
Hypothermia D007035 19 associated lipids
Erectile Dysfunction D007172 19 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Peptic Ulcer D010437 19 associated lipids
Lymphoma D008223 18 associated lipids
Ischemia D007511 18 associated lipids
Down Syndrome D004314 18 associated lipids
Albuminuria D000419 18 associated lipids
Mycoses D009181 18 associated lipids
Leukemia, Myelogenous, Chronic, BCR-ABL Positive D015464 17 associated lipids
Subarachnoid Hemorrhage D013345 17 associated lipids
Liver Cirrhosis, Alcoholic D008104 17 associated lipids
Dermatomycoses D003881 17 associated lipids
Brain Infarction D020520 17 associated lipids
Cholelithiasis D002769 16 associated lipids
Peritoneal Neoplasms D010534 16 associated lipids
Vascular Diseases D014652 16 associated lipids
Ulcer D014456 16 associated lipids
Pulmonary Disease, Chronic Obstructive D029424 16 associated lipids
Gram-Negative Bacterial Infections D016905 16 associated lipids
Choline Deficiency D002796 16 associated lipids
Tremor D014202 15 associated lipids
Encephalitis D004660 15 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Demyelinating Diseases D003711 15 associated lipids
Burkitt Lymphoma D002051 15 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Testicular Diseases D013733 15 associated lipids
Thrombocytopenia D013921 15 associated lipids
Hemorrhage D006470 15 associated lipids
HIV Seropositivity D006679 15 associated lipids
Neutropenia D009503 15 associated lipids
Uveitis D014605 14 associated lipids
Alopecia D000505 14 associated lipids
Stomatitis D013280 14 associated lipids
Vasculitis D014657 14 associated lipids
Carcinoma, Squamous Cell D002294 14 associated lipids
Hypersensitivity, Immediate D006969 14 associated lipids
Sarcoidosis D012507 13 associated lipids
Hypoglycemia D007003 13 associated lipids
Hypercalcemia D006934 13 associated lipids
Biliary Fistula D001658 13 associated lipids
Urticaria D014581 13 associated lipids
Corneal Diseases D003316 13 associated lipids
Abnormalities, Multiple D000015 13 associated lipids
Sciatic Neuropathy D020426 13 associated lipids
Glucose Intolerance D018149 13 associated lipids
Bradycardia D001919 13 associated lipids
Rosacea D012393 13 associated lipids
Hematuria D006417 13 associated lipids
Multiple Myeloma D009101 13 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Critical Illness D016638 13 associated lipids
Hypertension, Portal D006975 12 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Retinoblastoma D012175 12 associated lipids
Osteoporosis D010024 12 associated lipids
Liver Cirrhosis, Biliary D008105 12 associated lipids
Listeriosis D008088 12 associated lipids
Abortion, Spontaneous D000022 12 associated lipids
Eye Diseases D005128 12 associated lipids
Skin Neoplasms D012878 12 associated lipids
Hepatitis C, Chronic D019698 12 associated lipids
Crohn Disease D003424 12 associated lipids
Hypertrophy, Left Ventricular D017379 12 associated lipids
Duodenal Ulcer D004381 12 associated lipids
Keloid D007627 12 associated lipids
Lymphoma, T-Cell D016399 11 associated lipids
Uveitis, Anterior D014606 11 associated lipids
Graft Occlusion, Vascular D006083 11 associated lipids
Liver Failure, Acute D017114 11 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Shock D012769 11 associated lipids
Hyperbilirubinemia D006932 11 associated lipids
Scalp Dermatoses D012536 11 associated lipids
Thinness D013851 11 associated lipids
Shock, Septic D012772 11 associated lipids
Nephrotic Syndrome D009404 11 associated lipids
Dehydration D003681 11 associated lipids
Exanthema D005076 11 associated lipids
Hyperpigmentation D017495 11 associated lipids
Influenza, Human D007251 11 associated lipids
Urinary Tract Infections D014552 11 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Sheiner PA et al. Acute renal failure associated with the use of ibuprofen in two liver transplant recipients on FK506. 1994 Transplantation pmid:7513099
Therapondos G et al. Cardiac hypertrophy in liver transplant recipients: tacrolimus, cyclosporine or both? 2003 Transplantation pmid:12883220
Ogunseinde BA et al. A case of tacrolimus (FK506)-induced pancreatitis and fatality 2 years postcadaveric renal transplant. 2003 Transplantation pmid:12883222
Thomas J et al. The immunosuppressive action of FK506. In vitro induction of allogeneic unresponsiveness in human CTL precursors. 1990 Transplantation pmid:1689518
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
Migita K et al. FK506 markedly enhances apoptosis of antigen-stimulated peripheral T cells by down-regulation of Bcl-xL. 1999 Transplantation pmid:10532544
Leroy-Matheron C et al. Inhibitor against coagulation factor V after liver transplantation. 1999 Transplantation pmid:10532550
Méndez A et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. 2014 Transplantation pmid:24492423
Boleslawski E et al. Defective inhibition of peripheral CD8+ T cell IL-2 production by anti-calcineurin drugs during acute liver allograft rejection. 2004 Transplantation pmid:15223897
Hougardy JM et al. The once-daily formulation of tacrolimus: a step forward in kidney transplantation? 2012 Transplantation pmid:22234346
Bilolo KK et al. Synergistic effects of malononitrilamides (FK778, FK779) with tacrolimus (FK506) in prevention of acute heart and kidney allograft rejection and reversal of ongoing heart allograft rejection in the rat. 2003 Transplantation pmid:12811249
Morrissey PE et al. Correlation of clinical outcomes after tacrolimus conversion for resistant kidney rejection or cyclosporine toxicity with pathologic staging by the Banff criteria. 1997 Transplantation pmid:9089224
Kiuchi T et al. A hepatic graft tuberculosis transmitted from a living-related donor. 1997 Transplantation pmid:9089234
Jeske HC et al. Gemcitabine with cyclosporine or with tacrolimus exerts a synergistic effect and induces tolerance in the rat. 2003 Transplantation pmid:14557751
Karlsson H and Nässberger L FK506 suppresses the mitogen-induced increase in lymphocyte adhesiveness to endothelial cells, but does not affect endothelial cell activation in response to inflammatory stimuli. 1997 Transplantation pmid:9355847
Reding R et al. Conversion from cyclosporine to FK506 for salvage of immunocompromised pediatric liver allografts. Efficacy, toxicity, and dose regimen in 23 children. 1994 Transplantation pmid:7507272
Storb R et al. FK-506 and methotrexate prevent graft-versus-host disease in dogs given 9.2 Gy total body irradiation and marrow grafts from unrelated dog leukocyte antigen-nonidentical donors. 1993 Transplantation pmid:7692635
Thervet E et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. 2003 Transplantation pmid:14578760
McDiarmid SV et al. A comparison of renal function in cyclosporine- and FK-506-treated patients after primary orthotopic liver transplantation. 1993 Transplantation pmid:7692636
Osowski CL et al. Evaluation of the drug interaction between intravenous high-dose fluconazole and cyclosporine or tacrolimus in bone marrow transplant patients. 1996 Transplantation pmid:8610430
Burroughs TE et al. Increasing incidence of new-onset diabetes after transplant among pediatric renal transplant patients. 2009 Transplantation pmid:19667939
Mittal SK et al. Increased interleukin-10 production without expansion of CD4+CD25+ T-regulatory cells in early stable renal transplant patients on calcineurin inhibitors. 2009 Transplantation pmid:19667950
Saliba F et al. Corticosteroid-Sparing and Optimization of Mycophenolic Acid Exposure in Liver Transplant Recipients Receiving Mycophenolate Mofetil and Tacrolimus: A Randomized, Multicenter Study. 2016 Transplantation pmid:27454919
Kung L and Halloran PF Immunophilins may limit calcineurin inhibition by cyclosporine and tacrolimus at high drug concentrations. 2000 Transplantation pmid:10933159
Beatty PR et al. Effect of cyclosporine and tacrolimus on the growth of Epstein-Barr virus-transformed B-cell lines. 1998 Transplantation pmid:9603175
Maes BD et al. Differences in gastric motor activity in renal transplant recipients treated with FK-506 versus cyclosporine. 1999 Transplantation pmid:10589943
Gruber SA et al. Initial results of solitary pancreas transplants performed without regard to donor/recipient HLA mismatching. 2000 Transplantation pmid:10933170
Shapiro R et al. Alopecia as a consequence of tacrolimus therapy. 1998 Transplantation pmid:9603186
Shapiro AM et al. Defining optimal immunosuppression for islet transplantation based on reduced diabetogenicity in canine islet autografts. 2002 Transplantation pmid:12490784
Lang T et al. Production of IL-4 and IL-10 does not lead to immune quiescence in vascularized human organ grafts. 1996 Transplantation pmid:8824477
Mehra MR et al. Ethnic disparity in clinical outcome after heart transplantation is abrogated using tacrolimus and mycophenolate mofetil-based immunosuppression. 2002 Transplantation pmid:12490790
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Augustine JJ et al. Improved renal function after conversion from tacrolimus/sirolimus to tacrolimus/mycophenolate mofetil in kidney transplant recipients. 2006 Transplantation pmid:16612276
Meier M et al. Slowing the progression of chronic allograft nephropathy by conversion from cyclosporine to tacrolimus: a randomized controlled trial. 2006 Transplantation pmid:16612281
Tan HP et al. Pediatric living donor kidney transplantation under alemtuzumab pretreatment and tacrolimus monotherapy: 4-year experience. 2008 Transplantation pmid:19104412
de Fijter JW Tacrolimus dosing in mycophenolate-treated patients--can we get away with less? 2011 Transplantation pmid:21654351
Brunet M et al. Sequential determination of pharmacokinetics and pharmacodynamics of mycophenolic acid in liver transplant patients treated with mycophenolate mofetil. 2006 Transplantation pmid:16495801
Kessler L et al. Tacrolimus-associated optic neuropathy after pancreatic islet transplantation using a sirolimus/tacrolimus immunosuppressive regimen. 2006 Transplantation pmid:16495816
Meiser BM The best dosing for initial tacrolimus application is trough level adapted! 2005 Transplantation pmid:15714162
Taylor-Fishwick DA et al. Evidence that rapamycin has differential effects of IL-4 function. Multiple IL-4 signaling pathways and implications for in vivo use. 1993 Transplantation pmid:7689258
Guasch A et al. Assessment of efficacy and safety of FK778 in comparison with standard care in renal transplant recipients with untreated BK nephropathy. 2010 Transplantation pmid:20811320
Ciancio G et al. A randomized long-term trial of tacrolimus/sirolimus versus tacrolimus/mycophenolate mofetil versus cyclosporine (NEORAL)/sirolimus in renal transplantation. II. Survival, function, and protocol compliance at 1 year. 2004 Transplantation pmid:14742990
Azzola A et al. Everolimus and mycophenolate mofetil are potent inhibitors of fibroblast proliferation after lung transplantation. 2004 Transplantation pmid:14742993
van Hooff JP et al. Tacrolimus and posttransplant diabetes mellitus in renal transplantation. 2005 Transplantation pmid:15940032
Wang X et al. Immunosuppression with a combination of pg490-88 and a subtherapeutic dose of FK506 in a canine renal allograft model. 2005 Transplantation pmid:15940043
Nankivell BJ et al. Oral cyclosporine but not tacrolimus reduces renal transplant blood flow. 2004 Transplantation pmid:15167607
Hewitt CW and Black KS Comparative studies of FK506 with cyclosporine. 1988 Transplantation pmid:2458644
Ellis D et al. Phospholipase-C and Na-K ATPase activation by cyclosporine and FK506 in LLC-PK1, cells. Possible implications in blood pressure regulation. 1991 Transplantation pmid:1714643
Rezeig MA et al. Kaposi's sarcoma in liver transplant recipients on FK506: two case reports. 1997 Transplantation pmid:9175820
Mor E et al. Reversal of gastrointestinal toxicity associated with long-term FK506 immunosuppression by conversion to cyclosporine in liver transplant recipients. 1994 Transplantation pmid:7513098