tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Dermatomycoses D003881 17 associated lipids
Dermatomyositis D003882 2 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diarrhea D003967 32 associated lipids
Digestive System Diseases D004066 3 associated lipids
Down Syndrome D004314 18 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
Duodenal Ulcer D004381 12 associated lipids
Dysgammaglobulinemia D004406 3 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Dysplastic Nevus Syndrome D004416 1 associated lipids
Dyspnea D004417 10 associated lipids
Earache D004433 2 associated lipids
Echinostomiasis D004451 1 associated lipids
Ecthyma, Contagious D004474 1 associated lipids
Eczema D004485 4 associated lipids
Edema D004487 152 associated lipids
Encephalitis D004660 15 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Enterobacteriaceae Infections D004756 5 associated lipids
Epidermolysis Bullosa D004820 3 associated lipids
Epididymitis D004823 1 associated lipids
Epilepsy, Temporal Lobe D004833 4 associated lipids
Erythema D004890 22 associated lipids
Erythema Nodosum D004893 5 associated lipids
Leukemia, Erythroblastic, Acute D004915 41 associated lipids
Erythroplasia D004919 1 associated lipids
Esophageal Perforation D004939 1 associated lipids
Exanthema D005076 11 associated lipids
Eye Diseases D005128 12 associated lipids
Facial Dermatoses D005148 7 associated lipids
Facial Neoplasms D005153 3 associated lipids
Fatigue D005221 10 associated lipids
Fatty Liver D005234 48 associated lipids
Femur Head Necrosis D005271 5 associated lipids
Fetal Hypoxia D005311 3 associated lipids
Fever D005334 35 associated lipids
Fibrosis D005355 23 associated lipids
Fistula D005402 8 associated lipids
Folliculitis D005499 7 associated lipids
Food Hypersensitivity D005512 7 associated lipids
Foot Deformities, Acquired D005531 2 associated lipids
Foot Dermatoses D005533 3 associated lipids
Fox-Fordyce Disease D005588 2 associated lipids
Fractures, Spontaneous D005598 4 associated lipids
Gastroenteritis D005759 4 associated lipids
Gastrointestinal Diseases D005767 20 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Castleman Disease D005871 3 associated lipids
Gingival Hyperplasia D005885 3 associated lipids
Gingivitis D005891 3 associated lipids
Glioma D005910 112 associated lipids
Gliosis D005911 6 associated lipids
Glomerulonephritis D005921 35 associated lipids
Glomerulosclerosis, Focal Segmental D005923 4 associated lipids
Glycosuria D006029 10 associated lipids
Gout D006073 4 associated lipids
Graft Occlusion, Vascular D006083 11 associated lipids
Granuloma, Giant Cell D006101 7 associated lipids
Graves Disease D006111 6 associated lipids
Gynecomastia D006177 6 associated lipids
Hallucinations D006212 4 associated lipids
Hand Dermatoses D006229 5 associated lipids
Hand Injuries D006230 1 associated lipids
Headache D006261 4 associated lipids
Hearing Loss, Bilateral D006312 1 associated lipids
Hearing Loss, Noise-Induced D006317 4 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Cardiomegaly D006332 31 associated lipids
Heart Failure D006333 36 associated lipids
Heart Injuries D006335 6 associated lipids
Hematologic Diseases D006402 3 associated lipids
Hematoma D006406 5 associated lipids
Hematuria D006417 13 associated lipids
Hemolysis D006461 131 associated lipids
Hemolytic-Uremic Syndrome D006463 2 associated lipids
Hemophilia A D006467 10 associated lipids
Hemorrhage D006470 15 associated lipids
Budd-Chiari Syndrome D006502 1 associated lipids
Hepatic Veno-Occlusive Disease D006504 1 associated lipids
Hepatitis, Viral, Animal D006524 4 associated lipids
Hepatitis C D006526 7 associated lipids
Hepatolenticular Degeneration D006527 3 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hernia, Ventral D006555 1 associated lipids
Herpes Labialis D006560 1 associated lipids
Herpesviridae Infections D006566 4 associated lipids
HIV Seropositivity D006679 15 associated lipids
Deltaretrovirus Infections D006800 1 associated lipids
Hydronephrosis D006869 4 associated lipids
Hyperalgesia D006930 42 associated lipids
Hyperbilirubinemia D006932 11 associated lipids
Hypercalcemia D006934 13 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperglycemia D006943 21 associated lipids
Hyperkalemia D006947 3 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Slocum AMY A surgeon's nightmare: pyoderma gangrenosum with pathergy effect mimicking necrotising fasciitis. 2017 BMJ Case Rep pmid:29269363
Charlton M et al. Everolimus Is Associated With Less Weight Gain Than Tacrolimus 2 Years After Liver Transplantation: Results of a Randomized Multicenter Study. 2017 Transplantation pmid:28817434
Ghaffari R et al. Tacrolimus Eye Drops as Adjunct Therapy in Severe Corneal Endothelial Rejection Refractory to Corticosteroids. 2017 Cornea pmid:28817391
Huh KH et al. De novo low-dose sirolimus versus mycophenolate mofetil in combination with extended-release tacrolimus in kidney transplant recipients: a multicentre, open-label, randomized, controlled, non-inferiority trial. 2017 Nephrol. Dial. Transplant. pmid:28810721
Choi SW et al. Vorinostat plus tacrolimus/methotrexate to prevent GVHD after myeloablative conditioning, unrelated donor HCT. 2017 Blood pmid:28784598
Nazmul MN et al. Severe Hyperkalemia Complicating Voriconazole Treatment in a Kidney Transplant Recipient With Histoplasmosis: A Case Report. 2017 Transplant. Proc. pmid:29198681
Berisa Prado S et al. Topical Tacrolimus for Corneal Subepithelial Infiltrates Secondary to Adenoviral Keratoconjunctivitis. 2017 Cornea pmid:28704319
Lloberas N et al. The combination of CYP3A4*22 and CYP3A5*3 single-nucleotide polymorphisms determines tacrolimus dose requirement after kidney transplantation. 2017 Pharmacogenet. Genomics pmid:28704257
Saito R et al. Two cases of eczematous drug eruption caused by oral tacrolimus administration. 2017 Contact Derm. pmid:28703346
Hirai T et al. The effectiveness of new triple combination therapy using synthetic disease-modifying anti-rheumatic drugs with different pharmacological function against rheumatoid arthritis: the verification by an in vitro and clinical study. 2017 Clin. Rheumatol. pmid:27783236
Ruiz S et al. Tacrolimus rescues the signaling and gene expression signature of endothelial ALK1 loss-of-function and improves HHT vascular pathology. 2017 Hum. Mol. Genet. pmid:28973643
Benítez C et al. Letter: sublingual dosing of tacrolimus in transplant patients-interesting concept to overcome first pass effects. Authors' reply. 2017 Aliment. Pharmacol. Ther. pmid:28589580
Wu H et al. Novel self-assembled tacrolimus nanoparticles cross-linking thermosensitive hydrogels for local rheumatoid arthritis therapy. 2017 Colloids Surf B Biointerfaces pmid:27736727
Kim YJ et al. Two cases of hydroa vacciniforme-like lymphoproliferative disease controlled by anti-inflammatory agents. 2017 Photodermatol Photoimmunol Photomed pmid:28543883
Gooptu M and Koreth J Better acute graft--host disease outcomes for allogeneic transplant recipients in the modern era: a tacrolimus effect? 2017 Haematologica pmid:28458253
Costa JS et al. Polyomavirus Nephropathy: Ten-Year Experience. 2017 Transplant. Proc. pmid:28457399
O'Leary JG Editorial: tacrolimus-how low can you go? 2017 Aliment. Pharmacol. Ther. pmid:28589579
Chiasson VL et al. Regulatory T-Cell Augmentation or Interleukin-17 Inhibition Prevents Calcineurin Inhibitor-Induced Hypertension in Mice. 2017 Hypertension pmid:28584011
Kodama S et al. Tacrolimus-Induced Reversible Cerebral Vasoconstriction Syndrome with Delayed Multi-Segmental Vasoconstriction. 2017 J Stroke Cerebrovasc Dis pmid:28342655
Lichtenberg S et al. The incidence of post-transplant cancer among kidney transplant recipients is associated with the level of tacrolimus exposure during the first year after transplantation. 2017 Eur. J. Clin. Pharmacol. pmid:28342067
Salgüero Fernández I et al. Rapidly progressive infiltrated plaques in a transplant recipient. 2017 Actas Dermosifiliogr pmid:27677210
Shoda W et al. Calcineurin inhibitors block sodium-chloride cotransporter dephosphorylation in response to high potassium intake. 2017 Kidney Int. pmid:28341239
Cakir U et al. Role of Everolimus on Cardiac Functions in Kidney Transplant Recipients. 2017 Transplant. Proc. pmid:28340820
Hettiarachchi PVKS et al. Comparison of topical tacrolimus and clobetasol in the management of symptomatic oral lichen planus: A double-blinded, randomized clinical trial in Sri Lanka. 2017 J Investig Clin Dent pmid:27633647
Zhu J et al. Granzyme B producing B-cells in renal transplant patients. 2017 Clin. Immunol. pmid:28461110
Stojanovic J et al. Immune Desensitization Allows Pediatric Blood Group Incompatible Kidney Transplantation. 2017 Transplantation pmid:27463537
Terada Y et al. Tacrolimus Triggers Transient Receptor Potential Vanilloid-1-Dependent Relapse of Pancreatitis-Related Pain in Mice. 2017 Pharmacology pmid:28253495
Zhang X et al. Influence of IL-18 and IL-10 Polymorphisms on Tacrolimus Elimination in Chinese Lung Transplant Patients. 2017 Dis. Markers pmid:28246425
Kanai T et al. Adequate tacrolimus concentration for myasthenia gravis treatment. 2017 Eur. J. Neurol. pmid:28102047
Fan B et al. Prograf produces more benefits for CYP3A5 low expression patients in early stage after kidney transplantation. 2017 Biomed. Pharmacother. pmid:28157649
Grant CR et al. Immunosuppressive drugs affect interferon (IFN)-γ and programmed cell death 1 (PD-1) kinetics in patients with newly diagnosed autoimmune hepatitis. 2017 Clin. Exp. Immunol. pmid:28257599
Juvvadi PR et al. Calcineurin in fungal virulence and drug resistance: Prospects for harnessing targeted inhibition of calcineurin for an antifungal therapeutic approach. 2017 Virulence pmid:27325145
D'Avola D et al. Cardiovascular morbidity and mortality after liver transplantation: The protective role of mycophenolate mofetil. 2017 Liver Transpl. pmid:28160394
Kaneshiro S et al. The efficacy and safety of additional administration of tacrolimus in patients with rheumatoid arthritis who showed an inadequate response to tocilizumab. 2017 Mod Rheumatol pmid:27181115
Andreu F et al. A New CYP3A5*3 and CYP3A4*22 Cluster Influencing Tacrolimus Target Concentrations: A Population Approach. 2017 Clin Pharmacokinet pmid:28050888
Shimizu K Development of New Liposome Targeting Strategies for Application of Disease Therapies. 2017 Yakugaku Zasshi pmid:28049894
Wang J et al. Metabolic network model guided engineering ethylmalonyl-CoA pathway to improve ascomycin production in Streptomyces hygroscopicus var. ascomyceticus. 2017 Microb. Cell Fact. pmid:28974216
Ordóñez-Robles M et al. Analysis of the Pho regulon in Streptomyces tsukubaensis. 2017 Microbiol. Res. pmid:28942849
Maneechote C et al. Roles of mitochondrial dynamics modulators in cardiac ischaemia/reperfusion injury. 2017 J. Cell. Mol. Med. pmid:28941171
Reese PP et al. Automated Reminders and Physician Notification to Promote Immunosuppression Adherence Among Kidney Transplant Recipients: A Randomized Trial. 2017 Am. J. Kidney Dis. pmid:27940063
Shrestha BM Two Decades of Tacrolimus in Renal Transplant: Basic Science and Clinical Evidences. 2017 Exp Clin Transplant pmid:27938316
Weininger U et al. Dynamics of Aromatic Side Chains in the Active Site of FKBP12. 2017 Biochemistry pmid:27936610
Yu MY et al. Short-term anti-proteinuric effect of tacrolimus is not related to preservation of the glomerular filtration rate in IgA nephropathy: A 5-year follow-up study. 2017 PLoS ONE pmid:29155873
Alloway RR et al. Bioequivalence between innovator and generic tacrolimus in liver and kidney transplant recipients: A randomized, crossover clinical trial. 2017 PLoS Med. pmid:29135993
Gonzalez-Andrades M et al. Sterile Corneal Infiltrates Secondary to Psoriasis Exacerbations: Topical Tacrolimus as an Alternative Treatment Option. 2017 Eye Contact Lens pmid:26222098
Božina N et al. Steady-state pharmacokinetics of mycophenolic acid in renal transplant patients: exploratory analysis of the effects of cyclosporine, recipients' and donors' ABCC2 gene variants, and their interactions. 2017 Eur. J. Clin. Pharmacol. pmid:28624888
Olmedo Martín RV et al. Medium to long-term efficacy and safety of oral tacrolimus in moderate to severe steroid refractory ulcerative colitis. 2017 Rev Esp Enferm Dig pmid:28617029
Maldonado AQ et al. Prevalence of CYP3A5 Genomic Variances and Their Impact on Tacrolimus Dosing Requirements among Kidney Transplant Recipients in Eastern North Carolina. 2017 Pharmacotherapy pmid:28605053
Yagi S et al. New-onset diabetes mellitus after living-donor liver transplantation: association with graft synthetic function. 2017 Surg. Today pmid:27837276
Pietrosi G and Chinnici C Report on Liver Cell Transplantation Using Human Fetal Liver Cells. 2017 Methods Mol. Biol. pmid:27830561