tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Dermatomycoses D003881 17 associated lipids
Dermatomyositis D003882 2 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diarrhea D003967 32 associated lipids
Digestive System Diseases D004066 3 associated lipids
Down Syndrome D004314 18 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
Duodenal Ulcer D004381 12 associated lipids
Dysgammaglobulinemia D004406 3 associated lipids
Dyskinesia, Drug-Induced D004409 15 associated lipids
Dysplastic Nevus Syndrome D004416 1 associated lipids
Dyspnea D004417 10 associated lipids
Earache D004433 2 associated lipids
Echinostomiasis D004451 1 associated lipids
Ecthyma, Contagious D004474 1 associated lipids
Eczema D004485 4 associated lipids
Edema D004487 152 associated lipids
Encephalitis D004660 15 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Endomyocardial Fibrosis D004719 4 associated lipids
Enterobacteriaceae Infections D004756 5 associated lipids
Epidermolysis Bullosa D004820 3 associated lipids
Epididymitis D004823 1 associated lipids
Epilepsy, Temporal Lobe D004833 4 associated lipids
Erythema D004890 22 associated lipids
Erythema Nodosum D004893 5 associated lipids
Leukemia, Erythroblastic, Acute D004915 41 associated lipids
Erythroplasia D004919 1 associated lipids
Esophageal Perforation D004939 1 associated lipids
Exanthema D005076 11 associated lipids
Eye Diseases D005128 12 associated lipids
Facial Dermatoses D005148 7 associated lipids
Facial Neoplasms D005153 3 associated lipids
Fatigue D005221 10 associated lipids
Fatty Liver D005234 48 associated lipids
Femur Head Necrosis D005271 5 associated lipids
Fetal Hypoxia D005311 3 associated lipids
Fever D005334 35 associated lipids
Fibrosis D005355 23 associated lipids
Fistula D005402 8 associated lipids
Folliculitis D005499 7 associated lipids
Food Hypersensitivity D005512 7 associated lipids
Foot Deformities, Acquired D005531 2 associated lipids
Foot Dermatoses D005533 3 associated lipids
Fox-Fordyce Disease D005588 2 associated lipids
Fractures, Spontaneous D005598 4 associated lipids
Gastroenteritis D005759 4 associated lipids
Gastrointestinal Diseases D005767 20 associated lipids
Genital Diseases, Female D005831 7 associated lipids
Castleman Disease D005871 3 associated lipids
Gingival Hyperplasia D005885 3 associated lipids
Gingivitis D005891 3 associated lipids
Glioma D005910 112 associated lipids
Gliosis D005911 6 associated lipids
Glomerulonephritis D005921 35 associated lipids
Glomerulosclerosis, Focal Segmental D005923 4 associated lipids
Glycosuria D006029 10 associated lipids
Gout D006073 4 associated lipids
Graft Occlusion, Vascular D006083 11 associated lipids
Granuloma, Giant Cell D006101 7 associated lipids
Graves Disease D006111 6 associated lipids
Gynecomastia D006177 6 associated lipids
Hallucinations D006212 4 associated lipids
Hand Dermatoses D006229 5 associated lipids
Hand Injuries D006230 1 associated lipids
Headache D006261 4 associated lipids
Hearing Loss, Bilateral D006312 1 associated lipids
Hearing Loss, Noise-Induced D006317 4 associated lipids
Heart Defects, Congenital D006330 20 associated lipids
Cardiomegaly D006332 31 associated lipids
Heart Failure D006333 36 associated lipids
Heart Injuries D006335 6 associated lipids
Hematologic Diseases D006402 3 associated lipids
Hematoma D006406 5 associated lipids
Hematuria D006417 13 associated lipids
Hemolysis D006461 131 associated lipids
Hemolytic-Uremic Syndrome D006463 2 associated lipids
Hemophilia A D006467 10 associated lipids
Hemorrhage D006470 15 associated lipids
Budd-Chiari Syndrome D006502 1 associated lipids
Hepatic Veno-Occlusive Disease D006504 1 associated lipids
Hepatitis, Viral, Animal D006524 4 associated lipids
Hepatitis C D006526 7 associated lipids
Hepatolenticular Degeneration D006527 3 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hernia, Ventral D006555 1 associated lipids
Herpes Labialis D006560 1 associated lipids
Herpesviridae Infections D006566 4 associated lipids
HIV Seropositivity D006679 15 associated lipids
Deltaretrovirus Infections D006800 1 associated lipids
Hydronephrosis D006869 4 associated lipids
Hyperalgesia D006930 42 associated lipids
Hyperbilirubinemia D006932 11 associated lipids
Hypercalcemia D006934 13 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hyperglycemia D006943 21 associated lipids
Hyperkalemia D006947 3 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Albano L et al. OSAKA trial: a randomized, controlled trial comparing tacrolimus QD and BD in kidney transplantation. 2013 Transplantation pmid:23982340
Therapondos G et al. Cardiac hypertrophy in liver transplant recipients: tacrolimus, cyclosporine or both? 2003 Transplantation pmid:12883220
Fredericks S et al. Multidrug resistance gene-1 (MDR-1) haplotypes have a minor influence on tacrolimus dose requirements. 2006 Transplantation pmid:16969296
Marcos A et al. Use of alemtuzumab and tacrolimus monotherapy for cadaveric liver transplantation: with particular reference to hepatitis C virus. 2004 Transplantation pmid:15480160
Vathsala A et al. Analysis of the interactions of immunosuppressive drugs with cyclosporine in inhibiting DNA proliferation. 1990 Transplantation pmid:1689520
Gralla J and Wiseman AC Tacrolimus/sirolimus versus tacrolimus/mycophenolate in kidney transplantation: improved 3-year graft and patient survival in recent era. 2009 Transplantation pmid:19502965
Lee D et al. Age and Early Graft Function Relate With Risk-Benefit Ratio of Allogenic Islet Transplantation Under Antithymocyte Globulin-Mycophenolate Mofetil-Tacrolimus Immune Suppression. 2017 Transplantation pmid:27779572
Gruessner RW et al. A prospective study of FK506 versus CsA and pig ATG in a porcine model of small bowel transplantation. 1995 Transplantation pmid:7530871
Jindal RM et al. Serum lipid changes in liver transplant recipients in a prospective trial of cyclosporine versus FK506. 1994 Transplantation pmid:7514317
Todo S et al. Abdominal multivisceral transplantation. 1995 Transplantation pmid:7530873
Boleslawski E et al. Defective inhibition of peripheral CD8+ T cell IL-2 production by anti-calcineurin drugs during acute liver allograft rejection. 2004 Transplantation pmid:15223897
Hostettler KE et al. Cyclosporine A mediates fibroproliferation through epithelial cells. 2004 Transplantation pmid:15223908
Yang CW et al. Preconditioning with cyclosporine A or FK506 differentially regulates mitogen-activated protein kinase expression in rat kidneys with ischemia/reperfusion injury. 2003 Transplantation pmid:12544865
Guethoff S et al. Ten-year results of a randomized trial comparing tacrolimus versus cyclosporine a in combination with mycophenolate mofetil after heart transplantation. 2013 Transplantation pmid:23423270
Bilolo KK et al. Synergistic effects of malononitrilamides (FK778, FK779) with tacrolimus (FK506) in prevention of acute heart and kidney allograft rejection and reversal of ongoing heart allograft rejection in the rat. 2003 Transplantation pmid:12811249
Naesens M et al. The impact of renal allograft function on exposure and elimination of mycophenolic acid (MPA) and its metabolite MPA 7-O-glucuronide. 2007 Transplantation pmid:17700162
Huang E et al. Alemtuzumab induction in deceased donor kidney transplantation. 2007 Transplantation pmid:17984833
Utsugi R et al. Induction of transplantation tolerance with a short course of tacrolimus (FK506): I. Rapid and stable tolerance to two-haplotype fully mhc-mismatched kidney allografts in miniature swine. 2001 Transplantation pmid:11391221
Cox KL et al. An increased incidence of Epstein-Barr virus infection and lymphoproliferative disorder in young children on FK506 after liver transplantation. 1995 Transplantation pmid:7533344
Krentz AJ Posttransplantation Diabetes Mellitus in FK-506-Treated Renal Transplant Recipients: Analysis of Incidence and Risk Factors. Transplantation 2001; 72: 1655. 2001 Transplantation pmid:11726815
Jeske HC et al. Gemcitabine with cyclosporine or with tacrolimus exerts a synergistic effect and induces tolerance in the rat. 2003 Transplantation pmid:14557751
Muthukumar T et al. HIV-infected kidney graft recipients managed with an early corticosteroid withdrawal protocol: clinical outcomes and messenger RNA profiles. 2013 Transplantation pmid:23503504
Hill CC et al. Penile prosthesis surgery in the immunosuppressed patient. 1993 Transplantation pmid:7692633
Hariharan S et al. Rescue therapy with tacrolimus after combined kidney/pancreas and isolated pancreas transplantation in patients with severe cyclosporine nephrotoxicity. 1996 Transplantation pmid:8610411
Thervet E et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. 2003 Transplantation pmid:14578760
Ciancio G et al. Randomized trial of mycophenolate mofetil versus enteric-coated mycophenolate sodium in primary renal transplantation with tacrolimus and steroid avoidance: four-year analysis. 2011 Transplantation pmid:21107305
Theruvath TP et al. Control of antidonor antibody production with tacrolimus and mycophenolate mofetil in renal allograft recipients with chronic rejection. 2001 Transplantation pmid:11468538
Kung L and Halloran PF Immunophilins may limit calcineurin inhibition by cyclosporine and tacrolimus at high drug concentrations. 2000 Transplantation pmid:10933159
Beatty PR et al. Effect of cyclosporine and tacrolimus on the growth of Epstein-Barr virus-transformed B-cell lines. 1998 Transplantation pmid:9603175
Arzouk N et al. Interaction between tacrolimus and fumagillin in two kidney transplant recipients. 2006 Transplantation pmid:16421493
Zervos XA et al. Comparison of tacrolimus with microemulsion cyclosporine as primary immunosuppression in hepatitis C patients after liver transplantation. 1998 Transplantation pmid:9583863
Maes BD et al. Differences in gastric motor activity in renal transplant recipients treated with FK-506 versus cyclosporine. 1999 Transplantation pmid:10589943
Gruber SA et al. Initial results of solitary pancreas transplants performed without regard to donor/recipient HLA mismatching. 2000 Transplantation pmid:10933170
Shapiro R et al. Alopecia as a consequence of tacrolimus therapy. 1998 Transplantation pmid:9603186
Muraki T et al. Effects of cyclosporine and FK506 on in vitro high shear-induced platelet reactivity in rat and human non-anticoagulated blood. 1998 Transplantation pmid:9583878
Fernandez LA et al. The effects of maintenance doses of FK506 versus cyclosporin A on glucose and lipid metabolism after orthotopic liver transplantation. 1999 Transplantation pmid:10589951
Mehra MR et al. Ethnic disparity in clinical outcome after heart transplantation is abrogated using tacrolimus and mycophenolate mofetil-based immunosuppression. 2002 Transplantation pmid:12490790
Kandula P et al. Impact of tacrolimus-sirolimus maintenance immunosuppression on proteinuria and kidney function in pancreas transplant alone recipients. 2012 Transplantation pmid:23037007
Woodle ES et al. FK506: inhibition of humoral mechanisms of hepatic allograft rejection. 1992 Transplantation pmid:1379749
Dean PG et al. Kidney transplant histology after one year of continuous therapy with sirolimus compared with tacrolimus. 2008 Transplantation pmid:18431244
Shoji T et al. Operational tolerance to class I disparate lungs can be induced despite pretransplant immunization with class I allopeptides. 2007 Transplantation pmid:18091523
Ko S et al. The enhanced immunosuppressive efficacy of newly developed liposomal FK506 in canine liver transplantation. 1995 Transplantation pmid:7539553
Holt S and Moore K Different effects of tacrolimus and cyclosporine on renal hemodynamics and blood pressure in healthy subjects. 2002 Transplantation pmid:11907407
Nguyen L et al. Conversion from tacrolimus/mycophenolic acid to tacrolimus/leflunomide to treat cutaneous warts in a series of four pediatric renal allograft recipients. 2012 Transplantation pmid:22960763
Thomas PG et al. Alemtuzumab (Campath 1H) induction with tacrolimus monotherapy is safe for high immunological risk renal transplantation. 2007 Transplantation pmid:17565326
Nankivell BJ et al. Oral cyclosporine but not tacrolimus reduces renal transplant blood flow. 2004 Transplantation pmid:15167607
Ellis D et al. Phospholipase-C and Na-K ATPase activation by cyclosporine and FK506 in LLC-PK1, cells. Possible implications in blood pressure regulation. 1991 Transplantation pmid:1714643
Przepiorka D et al. Allogeneic transplantation for advanced leukemia: improved short-term outcome with blood stem cell grafts and tacrolimus. 1996 Transplantation pmid:8990368
Gruessner RW et al. Over 500 solitary pancreas transplants in nonuremic patients with brittle diabetes mellitus. 2008 Transplantation pmid:18192910
Langrehr JM et al. Clinical course, morphology, and treatment of chronically rejecting small bowel allografts. 1993 Transplantation pmid:7679526