tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Leukemia D007938 74 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Hematoma D006406 5 associated lipids
Demyelinating Diseases D003711 15 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Lymphoproliferative Disorders D008232 7 associated lipids
Crohn Disease D003424 12 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Leukemia, Myelogenous, Chronic, BCR-ABL Positive D015464 17 associated lipids
Cholestasis D002779 23 associated lipids
Fibrosis D005355 23 associated lipids
Osteoporosis, Postmenopausal D015663 4 associated lipids
Thyroid Diseases D013959 8 associated lipids
Sinusitis D012852 9 associated lipids
Leukocytosis D007964 9 associated lipids
Glomerulonephritis D005921 35 associated lipids
Immunologic Deficiency Syndromes D007153 8 associated lipids
Hypoglycemia D007003 13 associated lipids
Hemolytic-Uremic Syndrome D006463 2 associated lipids
Pancytopenia D010198 6 associated lipids
Nervous System Diseases D009422 37 associated lipids
Ataxia D001259 20 associated lipids
Psoriasis D011565 47 associated lipids
Urinary Tract Infections D014552 11 associated lipids
Brain Edema D001929 20 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Respiratory Insufficiency D012131 10 associated lipids
Gram-Negative Bacterial Infections D016905 16 associated lipids
Erectile Dysfunction D007172 19 associated lipids
Gingivitis D005891 3 associated lipids
Periodontal Pocket D010514 9 associated lipids
Brain Infarction D020520 17 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Stroke D020521 32 associated lipids
Liver Cirrhosis, Biliary D008105 12 associated lipids
Hyperbilirubinemia D006932 11 associated lipids
Liver Cirrhosis, Alcoholic D008104 17 associated lipids
Nephritis, Interstitial D009395 10 associated lipids
Nephrotic Syndrome D009404 11 associated lipids
Brain Ischemia D002545 89 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Ischemia D007511 18 associated lipids
Glycosuria D006029 10 associated lipids
Seizures D012640 87 associated lipids
Neuromuscular Diseases D009468 10 associated lipids
Nerve Degeneration D009410 53 associated lipids
Peptic Ulcer D010437 19 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Hypertension D006973 115 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Glomerulosclerosis, Focal Segmental D005923 4 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Dermatitis D003872 30 associated lipids
Gastrointestinal Diseases D005767 20 associated lipids
Vomiting D014839 21 associated lipids
Hypersensitivity, Immediate D006969 14 associated lipids
Subarachnoid Hemorrhage D013345 17 associated lipids
Pharyngitis D010612 2 associated lipids
Shock D012769 11 associated lipids
Erythema D004890 22 associated lipids
Dermatomycoses D003881 17 associated lipids
Hyperalgesia D006930 42 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Cholelithiasis D002769 16 associated lipids
Fever D005334 35 associated lipids
Amenorrhea D000568 4 associated lipids
Dermatitis, Seborrheic D012628 10 associated lipids
Thrombocytopenia D013921 15 associated lipids
Hyperlipidemias D006949 73 associated lipids
Shock, Septic D012772 11 associated lipids
Ileal Neoplasms D007078 2 associated lipids
Cough D003371 19 associated lipids
Paraproteinemias D010265 2 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Translocation, Genetic D014178 20 associated lipids
Catalepsy D002375 30 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Ovarian Cysts D010048 4 associated lipids
Precursor Cell Lymphoblastic Leukemia-Lymphoma D054198 10 associated lipids
Cardiomegaly D006332 31 associated lipids
Hypertension, Renal D006977 9 associated lipids
Metaplasia D008679 7 associated lipids
Burkitt Lymphoma D002051 15 associated lipids
Leukemia, T-Cell D015458 23 associated lipids
Tachycardia D013610 7 associated lipids
Cicatrix D002921 9 associated lipids
Neutropenia D009503 15 associated lipids
Peritoneal Neoplasms D010534 16 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Urticaria D014581 13 associated lipids
Behcet Syndrome D001528 7 associated lipids
Fetal Hypoxia D005311 3 associated lipids
Thrombophlebitis D013924 6 associated lipids
Cardiomyopathy, Hypertrophic D002312 6 associated lipids
HIV Seropositivity D006679 15 associated lipids
Uveitis D014605 14 associated lipids
Enterobacteriaceae Infections D004756 5 associated lipids
Alveolar Bone Loss D016301 10 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Tümgör G et al. A case of uneventful ABO-incompatible liver transplantation from a deceased donor managed with routine immunosuppressive treatment. 2014 Turk J Gastroenterol pmid:25599790
Dinçkan A et al. Evaluation of the first 100 liver transplantations. 2008 Turk J Gastroenterol pmid:18386237
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Schmidt LE et al. Relationship between postoperative erythromycin breath test and early morbidity in liver transplant recipients. 2003 Transplantation pmid:12883193
Vathsala A et al. Analysis of the interactions of immunosuppressive drugs with cyclosporine in inhibiting DNA proliferation. 1990 Transplantation pmid:1689520
Burroughs TE et al. Diabetic complications associated with new-onset diabetes mellitus in renal transplant recipients. 2007 Transplantation pmid:17452891
Méndez A et al. Pharmacokinetic study of conversion from tacrolimus twice-daily to tacrolimus once-daily in stable lung transplantation. 2014 Transplantation pmid:24492423
Misra S et al. Red cell aplasia in children on tacrolimus after liver transplantation. 1998 Transplantation pmid:9500636
Narayanan M et al. Outcomes in African American kidney transplant patients receiving tacrolimus and mycophenolic acid immunosuppression. 2013 Transplantation pmid:23423268
Butani L et al. Effect of felodipine on tacrolimus pharmacokinetics in a renal transplant recipient. 2002 Transplantation pmid:11793001
Velidedeoglu E et al. Early kidney dysfunction post liver transplantation predicts late chronic kidney disease. 2004 Transplantation pmid:15084934
Takeguchi N et al. Inhibition of the multidrug efflux pump in isolated hepatocyte couplets by immunosuppressants FK506 and cyclosporine. 1993 Transplantation pmid:7681229
Leung W et al. Long-term complete remission and immune tolerance after intensive chemotherapy for lymphoproliferative disorders complicating liver transplant. 1999 Transplantation pmid:10385092
Demetris AJ et al. Conversion of liver allograft recipients from cyclosporine to FK506 immunosuppressive therapy--a clinicopathologic study of 96 patients. 1992 Transplantation pmid:1374944
Bundick RV et al. FK506 as an agonist to induce inhibition of interleukin 2 production. 1992 Transplantation pmid:1374947
Egeland EJ et al. High Tacrolimus Clearance Is a Risk Factor for Acute Rejection in the Early Phase After Renal Transplantation. 2017 Transplantation pmid:28452920
Esquivel CO et al. Suggested guidelines for the use of tacrolimus in pediatric liver transplant patients. 1996 Transplantation pmid:8607198
Hsiau M et al. Monitoring nonadherence and acute rejection with variation in blood immunosuppressant levels in pediatric renal transplantation. 2011 Transplantation pmid:21857278
Yates CJ et al. Screening for new-onset diabetes after kidney transplantation: limitations of fasting glucose and advantages of afternoon glucose and glycated hemoglobin. 2013 Transplantation pmid:23902993
Kitayama T et al. Facilitation of tacrolimus-induced heart-allograft acceptability by pretransplant host treatment with granulocyte colony-stimulating factor: interleukin-12-restricted suppression of intragraft monokine mRNA expression. 2003 Transplantation pmid:12605126
Guo Z et al. In vivo effects of leflunomide on normal pancreatic islet and syngeneic islet graft function. 1997 Transplantation pmid:9075844
Egawa H et al. Isolated alkaline phosphatemia following pediatric liver transplantation in the FK506 ERA. 1995 Transplantation pmid:7533958
Sarwal MM et al. Promising early outcomes with a novel, complete steroid avoidance immunosuppression protocol in pediatric renal transplantation. 2001 Transplantation pmid:11468528
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Luan FL et al. New-onset diabetes mellitus in kidney transplant recipients discharged on steroid-free immunosuppression. 2011 Transplantation pmid:21242885
McDiarmid SV et al. Differences in oral FK506 dose requirements between adult and pediatric liver transplant patients. 1993 Transplantation pmid:7685933
Ahsan N et al. Randomized trial of tacrolimus plus mycophenolate mofetil or azathioprine versus cyclosporine oral solution (modified) plus mycophenolate mofetil after cadaveric kidney transplantation: results at 2 years. 2001 Transplantation pmid:11477347
Shapiro R et al. Alemtuzumab preconditioning with tacrolimus monotherapy-the impact of serial monitoring for donor-specific antibody. 2008 Transplantation pmid:18431232
Panz VR et al. Diabetogenic effect of tacrolimus in South African patients undergoing kidney transplantation1. 2002 Transplantation pmid:11889436
Charney DA et al. Plasma cell-rich acute renal allograft rejection. 1999 Transplantation pmid:10515379
Fisher NC et al. The clinical impact of nephrotoxicity in liver transplantation. 2000 Transplantation pmid:10910259
Kessler L et al. Tacrolimus-associated optic neuropathy after pancreatic islet transplantation using a sirolimus/tacrolimus immunosuppressive regimen. 2006 Transplantation pmid:16495816
Moffatt SD and Metcalfe SM Comparison between tacrolimus and cyclosporine as immunosuppressive agents compatible with tolerance induction by CD4/CD8 blockade. 2000 Transplantation pmid:10836388
Randhawa PS et al. Clinical significance of renal biopsies showing concurrent acute rejection and tacrolimus-associated tubular vacuolization. 1999 Transplantation pmid:9921801
Meiser BM The best dosing for initial tacrolimus application is trough level adapted! 2005 Transplantation pmid:15714162
Podesser BK et al. Comparison of low and high initial tacrolimus dosing in primary heart transplant recipients: a prospective European multicenter study. 2005 Transplantation pmid:15714171
Miao G et al. Development of donor-specific immunoregulatory T-cells after local CTLA4Ig gene transfer to pancreatic allograft. 2004 Transplantation pmid:15257039
Ryu S and Yasunami Y The necessity of differential immunosuppression for prevention of immune rejection by FK506 in rat islet allografts transplanted into the liver or beneath the kidney capsule. 1991 Transplantation pmid:1718064
Hricik DE et al. Withdrawal of steroid therapy in African American kidney transplant recipients receiving sirolimus and tacrolimus. 2003 Transplantation pmid:14508357
Chan L et al. Optimal everolimus concentration is associated with risk reduction for acute rejection in de novo renal transplant recipients. 2010 Transplantation pmid:20517177
Hodak SP et al. QT prolongation and near fatal cardiac arrhythmia after intravenous tacrolimus administration: a case report. 1998 Transplantation pmid:9734501