tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Leukemia D007938 74 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Hematoma D006406 5 associated lipids
Demyelinating Diseases D003711 15 associated lipids
Peripheral Nervous System Diseases D010523 33 associated lipids
Lymphoproliferative Disorders D008232 7 associated lipids
Crohn Disease D003424 12 associated lipids
Osteoarthritis, Knee D020370 13 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Leukemia, Myelogenous, Chronic, BCR-ABL Positive D015464 17 associated lipids
Cholestasis D002779 23 associated lipids
Fibrosis D005355 23 associated lipids
Osteoporosis, Postmenopausal D015663 4 associated lipids
Thyroid Diseases D013959 8 associated lipids
Sinusitis D012852 9 associated lipids
Leukocytosis D007964 9 associated lipids
Glomerulonephritis D005921 35 associated lipids
Immunologic Deficiency Syndromes D007153 8 associated lipids
Hypoglycemia D007003 13 associated lipids
Hemolytic-Uremic Syndrome D006463 2 associated lipids
Pancytopenia D010198 6 associated lipids
Nervous System Diseases D009422 37 associated lipids
Ataxia D001259 20 associated lipids
Psoriasis D011565 47 associated lipids
Urinary Tract Infections D014552 11 associated lipids
Brain Edema D001929 20 associated lipids
Pseudomonas Infections D011552 25 associated lipids
Respiratory Insufficiency D012131 10 associated lipids
Gram-Negative Bacterial Infections D016905 16 associated lipids
Erectile Dysfunction D007172 19 associated lipids
Gingivitis D005891 3 associated lipids
Periodontal Pocket D010514 9 associated lipids
Brain Infarction D020520 17 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Stroke D020521 32 associated lipids
Liver Cirrhosis, Biliary D008105 12 associated lipids
Hyperbilirubinemia D006932 11 associated lipids
Liver Cirrhosis, Alcoholic D008104 17 associated lipids
Nephritis, Interstitial D009395 10 associated lipids
Nephrotic Syndrome D009404 11 associated lipids
Brain Ischemia D002545 89 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Ischemia D007511 18 associated lipids
Glycosuria D006029 10 associated lipids
Seizures D012640 87 associated lipids
Neuromuscular Diseases D009468 10 associated lipids
Nerve Degeneration D009410 53 associated lipids
Peptic Ulcer D010437 19 associated lipids
Cystic Fibrosis D003550 65 associated lipids
Hypertension D006973 115 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Glomerulosclerosis, Focal Segmental D005923 4 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Dermatitis D003872 30 associated lipids
Gastrointestinal Diseases D005767 20 associated lipids
Vomiting D014839 21 associated lipids
Hypersensitivity, Immediate D006969 14 associated lipids
Subarachnoid Hemorrhage D013345 17 associated lipids
Pharyngitis D010612 2 associated lipids
Shock D012769 11 associated lipids
Erythema D004890 22 associated lipids
Dermatomycoses D003881 17 associated lipids
Hyperalgesia D006930 42 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Cholelithiasis D002769 16 associated lipids
Fever D005334 35 associated lipids
Amenorrhea D000568 4 associated lipids
Dermatitis, Seborrheic D012628 10 associated lipids
Thrombocytopenia D013921 15 associated lipids
Hyperlipidemias D006949 73 associated lipids
Shock, Septic D012772 11 associated lipids
Ileal Neoplasms D007078 2 associated lipids
Cough D003371 19 associated lipids
Paraproteinemias D010265 2 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Translocation, Genetic D014178 20 associated lipids
Catalepsy D002375 30 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Ovarian Cysts D010048 4 associated lipids
Precursor Cell Lymphoblastic Leukemia-Lymphoma D054198 10 associated lipids
Cardiomegaly D006332 31 associated lipids
Hypertension, Renal D006977 9 associated lipids
Metaplasia D008679 7 associated lipids
Burkitt Lymphoma D002051 15 associated lipids
Leukemia, T-Cell D015458 23 associated lipids
Tachycardia D013610 7 associated lipids
Cicatrix D002921 9 associated lipids
Neutropenia D009503 15 associated lipids
Peritoneal Neoplasms D010534 16 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Urticaria D014581 13 associated lipids
Behcet Syndrome D001528 7 associated lipids
Fetal Hypoxia D005311 3 associated lipids
Thrombophlebitis D013924 6 associated lipids
Cardiomyopathy, Hypertrophic D002312 6 associated lipids
HIV Seropositivity D006679 15 associated lipids
Uveitis D014605 14 associated lipids
Enterobacteriaceae Infections D004756 5 associated lipids
Alveolar Bone Loss D016301 10 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Keenan RJ et al. Immunosuppressive properties of thalidomide. Inhibition of in vitro lymphocyte proliferation alone and in combination with cyclosporine or FK506. 1991 Transplantation pmid:1719668
Vathsala A et al. Analysis of the interactions of immunosuppressive drugs with cyclosporine in inhibiting DNA proliferation. 1990 Transplantation pmid:1689520
Adams PS et al. Postoperative cardiac tamponade after kidney transplantation: a possible consequence of alemtuzumab-induced cytokine release syndrome. 2013 Transplantation pmid:23380870
Fridell JA et al. Steroid withdrawal for pancreas after kidney transplantation in recipients on maintenance prednisone immunosuppression. 2006 Transplantation pmid:16906038
Hostettler KE et al. Cyclosporine A mediates fibroproliferation through epithelial cells. 2004 Transplantation pmid:15223908
Yang CW et al. Preconditioning with cyclosporine A or FK506 differentially regulates mitogen-activated protein kinase expression in rat kidneys with ischemia/reperfusion injury. 2003 Transplantation pmid:12544865
Lykavieris P et al. Angioedema in pediatric liver transplant recipients under tacrolimus immunosuppression. 2003 Transplantation pmid:12544888
Kiuchi T et al. A hepatic graft tuberculosis transmitted from a living-related donor. 1997 Transplantation pmid:9089234
Donnadieu B et al. Central retinal vein occlusion-associated tacrolimus after liver transplantation. 2014 Transplantation pmid:25955343
Loucaidou M et al. Five-year results of kidney transplantation under tacrolimus-based regimes: the persisting significance of vascular rejection. 2003 Transplantation pmid:14557763
King-Biggs MB et al. Airway anastomotic dehiscence associated with use of sirolimus immediately after lung transplantation. 2003 Transplantation pmid:12792493
Welberry Smith MP et al. Alemtuzumab induction in renal transplantation permits safe steroid avoidance with tacrolimus monotherapy: a randomized controlled trial. 2013 Transplantation pmid:24056618
Barth RN et al. Prolonged survival of composite facial allografts in non-human primates associated with posttransplant lymphoproliferative disorder. 2009 Transplantation pmid:19996923
Ciancio G et al. Randomized trial of dual antibody induction therapy with steroid avoidance in renal transplantation. 2011 Transplantation pmid:22027927
Thervet E et al. Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. 2003 Transplantation pmid:14578760
Tabasco-Minguillan J et al. Insulin requirements after liver transplantation and FK-506 immunosuppression. 1993 Transplantation pmid:7692637
Jain A et al. Comparative long-term evaluation of tacrolimus and cyclosporine in pediatric liver transplantation. 2000 Transplantation pmid:10972220
Wang SC et al. A dual mechanism of immunosuppression by FK-506. Differential suppression of IL-4 and IL-10 levels in T helper 2 cells. 1993 Transplantation pmid:7692640
Zhao WY et al. Single kidneys transplanted from small pediatric donors less than 15 kilograms into pediatric recipients. 2014 Transplantation pmid:25955345
Prud'homme GJ et al. GABA protects human islet cells against the deleterious effects of immunosuppressive drugs and exerts immunoinhibitory effects alone. 2013 Transplantation pmid:23851932
Coto E and Tavira B Pharmacogenetics of calcineurin inhibitors in renal transplantation. 2009 Transplantation pmid:19667964
Nobori S et al. Long-term acceptance of fully allogeneic cardiac grafts by cotransplantation of vascularized thymus in miniature swine. 2006 Transplantation pmid:16421473
Yu S et al. Influence of CYP3A5 gene polymorphisms of donor rather than recipient to tacrolimus individual dose requirement in liver transplantation. 2006 Transplantation pmid:16421475
Gruber SA et al. Initial results of solitary pancreas transplants performed without regard to donor/recipient HLA mismatching. 2000 Transplantation pmid:10933170
Shapiro R et al. Alopecia as a consequence of tacrolimus therapy. 1998 Transplantation pmid:9603186
Fernandez LA et al. The effects of maintenance doses of FK506 versus cyclosporin A on glucose and lipid metabolism after orthotopic liver transplantation. 1999 Transplantation pmid:10589951
Batten P et al. Human T cell responses to human and porcine endothelial cells are highly sensitive to cyclosporin A and FK506 in vitro. 1999 Transplantation pmid:10589954
Mestres J et al. Late subcapsular lymphocele in a kidney graft. 2012 Transplantation pmid:22487814
Porrini E et al. Prediabetes in patients receiving tacrolimus in the first year after kidney transplantation: a prospective and multicenter study. 2008 Transplantation pmid:18431233
Singla AK et al. Cerulomycin Caerulomycin [corrected] A: a potent novel immunosuppressive agent. 2014 Transplantation pmid:24949498
Walsh C et al. Anti-CD25 monoclonal antibody replacement therapy for chronic kidney disease in liver transplant recipients. 2013 Transplantation pmid:23296149
Podesser BK et al. Comparison of low and high initial tacrolimus dosing in primary heart transplant recipients: a prospective European multicenter study. 2005 Transplantation pmid:15714171
Shaefer MS et al. Falsely elevated FK-506 levels caused by sampling through central venous catheters. 1993 Transplantation pmid:7689264
Borni-Duval C et al. Risk factors for BK virus infection in the era of therapeutic drug monitoring. 2013 Transplantation pmid:23778568
Mourer JS et al. Late calcineurin inhibitor withdrawal prevents progressive left ventricular diastolic dysfunction in renal transplant recipients. 2012 Transplantation pmid:22955227
Danziger-Isakov LA et al. The risk, prevention, and outcome of cytomegalovirus after pediatric lung transplantation. 2009 Transplantation pmid:19461492
Ferdman RM et al. Rapid intravenous desensitization to antithymocyte globulin in a patient with aplastic anemia. 2004 Transplantation pmid:14743005
Gibson SW et al. Nutritional immunomodulation leads to enhanced allograft survival in combination with cyclosporine A and rapamycin, but not FK506. 2000 Transplantation pmid:10852592
Pirenne J et al. Combined transplantation of small and large bowel. FK506 versus cyclosporine A in a porcine model. 1996 Transplantation pmid:8685944
Report from the 4th International Workshop on Clinical Pharmacology of HIV Therapy. Drug levels in PHAs who receive liver transplants. 2003 Apr-May TreatmentUpdate pmid:17216847
Kunz J and Hall MN Cyclosporin A, FK506 and rapamycin: more than just immunosuppression. 1993 Trends Biochem. Sci. pmid:7694398
Cardenas ME et al. Signal-transduction cascades as targets for therapeutic intervention by natural products. 1998 Trends Biotechnol. pmid:9807840
Snyder SH et al. Neural actions of immunophilin ligands. 1998 Trends Pharmacol. Sci. pmid:9509898
Liu J FK506 and ciclosporin: molecular probes for studying intracellular signal transduction. 1993 Trends Pharmacol. Sci. pmid:7692652
Chang JY et al. FK506 and rapamycin: novel pharmacological probes of the immune response. 1991 Trends Pharmacol. Sci. pmid:1710854
Sommerer C et al. Design and rationale of the ATHENA study--A 12-month, multicentre, prospective study evaluating the outcomes of a de novo everolimus-based regimen in combination with reduced cyclosporine or tacrolimus versus a standard regimen in kidney transplant patients: study protocol for a randomised controlled trial. 2016 Trials pmid:26888217
Nashan B et al. Evaluating the efficacy, safety and evolution of renal function with early initiation of everolimus-facilitated tacrolimus reduction in de novo liver transplant recipients: Study protocol for a randomized controlled trial. 2015 Trials pmid:25873064
Bajetta E et al. Merkel cell carcinoma after liver transplantation: a case report. 2007 May-Jun Tumori pmid:17679476
Vennarecci G et al. [Acute liver toxicity of antiretroviral therapy (HAART) after liver transplantation in a patient with HIV-HCV coinfection and associated hepatocarcinoma (HCC)]. 2003 Jul-Aug Tumori pmid:12903579
Dinçkan A et al. Evaluation of the first 100 liver transplantations. 2008 Turk J Gastroenterol pmid:18386237