tacrolimus

Tacrolimus is a lipid of Polyketides (PK) class. Tacrolimus is associated with abnormalities such as Renal glomerular disease. The involved functions are known as inhibitors, Fungicidal activity, Metabolic Inhibition, Excretory function and Dephosphorylation. Tacrolimus often locates in Hepatic, Mitochondrial matrix and Inner mitochondrial membrane. The associated genes with Tacrolimus are RHOA gene and BGN gene.

Cross Reference

Introduction

To understand associated biological information of tacrolimus, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with tacrolimus?

tacrolimus is suspected in Renal glomerular disease, Candidiasis, Mycoses, PARKINSON DISEASE, LATE-ONSET, Morphologically altered structure, Skin Diseases, Infectious and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with tacrolimus

MeSH term MeSH ID Detail
Angioedema D000799 6 associated lipids
Anus Diseases D001004 3 associated lipids
Apraxias D001072 1 associated lipids
Arm Injuries D001134 1 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Arthritis, Infectious D001170 8 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Ascites D001201 25 associated lipids
Ataxia D001259 20 associated lipids
Ataxia Telangiectasia D001260 6 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Autonomic Nervous System Diseases D001342 4 associated lipids
Bacterial Infections D001424 21 associated lipids
Balanitis D001446 4 associated lipids
Beckwith-Wiedemann Syndrome D001506 1 associated lipids
Behcet Syndrome D001528 7 associated lipids
Biliary Fistula D001658 13 associated lipids
Per page 10 20 50 100 | Total 613

PubChem Associated disorders and diseases

What pathways are associated with tacrolimus

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with tacrolimus?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with tacrolimus?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with tacrolimus?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with tacrolimus?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with tacrolimus?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with tacrolimus

Download all related citations
Per page 10 20 50 100 | Total 15051
Authors Title Published Journal PubMed Link
Miyauchi T et al. Effect of donor-specific splenocytes via portal vein and FK506 in rat small bowel transplantation. 1998 Transplantation pmid:9448139
Mieles L et al. Interaction between FK506 and clotrimazole in a liver transplant recipient. 1991 Transplantation pmid:1721250
Levy G et al. Results of lis2t, a multicenter, randomized study comparing cyclosporine microemulsion with C2 monitoring and tacrolimus with C0 monitoring in de novo liver transplantation. 2004 Transplantation pmid:15201658
Koprak S et al. Depletion of the mature CD4+8- thymocyte subset by FK506 analogs correlates with their immunosuppressive and calcineurin inhibitory activities. 1996 Transplantation pmid:8623162
Adams PS et al. Postoperative cardiac tamponade after kidney transplantation: a possible consequence of alemtuzumab-induced cytokine release syndrome. 2013 Transplantation pmid:23380870
Ajiki T et al. Generation of donor hematolymphoid cells after rat-limb composite grafting. 2003 Transplantation pmid:12640301
Tsuchiya N et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. 2004 Transplantation pmid:15502717
Takahara S et al. The in vitro immunosuppressive effect of deoxymethylspergualin in man as compared with FK506 and cyclosporine. 1992 Transplantation pmid:1373537
van Hooff JP et al. A prospective randomized multicenter study of tacrolimus in combination with sirolimus in renal-transplant recipients. 2003 Transplantation pmid:12829890
Shield CF et al. Assessment of health-related quality of life in kidney transplant patients receiving tacrolimus (FK506)-based versus cyclosporine-based immunosuppression. FK506 Kidney Transplant Study Group. 1997 Transplantation pmid:9422413
Stegall MD et al. Prednisone withdrawal 14 days after liver transplantation with mycophenolate: a prospective trial of cyclosporine and tacrolimus. 1997 Transplantation pmid:9422416
David-Neto E et al. The dynamics of glucose metabolism under calcineurin inhibitors in the first year after renal transplantation in nonobese patients. 2007 Transplantation pmid:17627237
Al-Uzri A et al. Posttransplant diabetes mellitus in pediatric renal transplant recipients: a report of the North American Pediatric Renal Transplant Cooperative Study (NAPRTCS). 2001 Transplantation pmid:11579294
Roy A et al. Tacrolimus as intervention in the treatment of hyperlipidemia after liver transplant. 2006 Transplantation pmid:16926593
Welberry Smith MP et al. Alemtuzumab induction in renal transplantation permits safe steroid avoidance with tacrolimus monotherapy: a randomized controlled trial. 2013 Transplantation pmid:24056618
Yang Z et al. Long-term liver allograft survival induced by combined treatment with rAAV-hCTLA4Ig gene transfer and low-dose FK506. 2003 Transplantation pmid:12589149
Ciancio G et al. Randomized trial of dual antibody induction therapy with steroid avoidance in renal transplantation. 2011 Transplantation pmid:22027927
Zhao WY et al. Single kidneys transplanted from small pediatric donors less than 15 kilograms into pediatric recipients. 2014 Transplantation pmid:25955345
Mor E et al. Late-onset acute rejection in orthotopic liver transplantation--associated risk factors and outcome. 1992 Transplantation pmid:1279849
Shapiro R et al. Posttransplant diabetes in pediatric recipients on tacrolimus. 1999 Transplantation pmid:10096540
Andoh TF et al. Enhancement of FK506 nephrotoxicity by sodium depletion in an experimental rat model. 1994 Transplantation pmid:7509514
Woodle ES et al. A multicenter trial of FK506 (tacrolimus) therapy in refractory acute renal allograft rejection. A report of the Tacrolimus Kidney Transplantation Rescue Study Group. 1996 Transplantation pmid:8830821
Franz M et al. Posttransplant hemolytic uremic syndrome in adult retransplanted kidney graft recipients: advantage of FK506 therapy? 1998 Transplantation pmid:9825827
Ekberg H et al. The challenge of achieving target drug concentrations in clinical trials: experience from the Symphony study. 2009 Transplantation pmid:19424036
Mathis AS et al. Sex and ethnicity may chiefly influence the interaction of fluconazole with calcineurin inhibitors. 2001 Transplantation pmid:11374405
Mestres J et al. Late subcapsular lymphocele in a kidney graft. 2012 Transplantation pmid:22487814
Jain A et al. Reasons for long-term use of steroid in primary adult liver transplantation under tacrolimus. 2001 Transplantation pmid:11374410
Cherikh WS et al. Association of the type of induction immunosuppression with posttransplant lymphoproliferative disorder, graft survival, and patient survival after primary kidney transplantation. 2003 Transplantation pmid:14627905
Mañez R et al. Anomalous pattern of IgG antibody response to primary cytomegalovirus infection after solid organ retransplantation. 1995 Transplantation pmid:7537400
Singla AK et al. Cerulomycin Caerulomycin [corrected] A: a potent novel immunosuppressive agent. 2014 Transplantation pmid:24949498
Chapman WC et al. Effect of Early Everolimus-Facilitated Reduction of Tacrolimus on Efficacy and Renal Function in De Novo Liver Transplant Recipients: 24-Month Results for the North American Subpopulation. 2017 Transplantation pmid:28121741
Walsh C et al. Anti-CD25 monoclonal antibody replacement therapy for chronic kidney disease in liver transplant recipients. 2013 Transplantation pmid:23296149
Becker T et al. Patient outcomes in two steroid-free regimens using tacrolimus monotherapy after daclizumab induction and tacrolimus with mycophenolate mofetil in liver transplantation. 2008 Transplantation pmid:19104406
Muthukkumar S et al. Rapamycin, a potent immunosuppressive drug, causes programmed cell death in B lymphoma cells. 1995 Transplantation pmid:7544036
Muraki T et al. Antithrombotic effect of FK506 versus prothrombotic effect of cyclosporine in vivo. 1995 Transplantation pmid:7544038
Yamani MH et al. The impact of routine mycophenolate mofetil drug monitoring on the treatment of cardiac allograft rejection. 2000 Transplantation pmid:10868634
Gloor JM et al. Subclinical rejection in tacrolimus-treated renal transplant recipients. 2002 Transplantation pmid:12131699
Verleden GM et al. Successful conversion from cyclosporine to tacrolimus for gastric motor dysfunction in a lung transplant recipient. 2002 Transplantation pmid:12131703
Borni-Duval C et al. Risk factors for BK virus infection in the era of therapeutic drug monitoring. 2013 Transplantation pmid:23778568
Johnson C et al. Randomized trial of tacrolimus (Prograf) in combination with azathioprine or mycophenolate mofetil versus cyclosporine (Neoral) with mycophenolate mofetil after cadaveric kidney transplantation. 2000 Transplantation pmid:10755536
Ekser B et al. Hepatic function after genetically engineered pig liver transplantation in baboons. 2010 Transplantation pmid:20606605
Jain A et al. Long-term outcome of adding mycophenolate mofetil to tacrolimus for nephrotoxicity following liver transplantation. 2005 Transplantation pmid:16210976
Mourer JS et al. Late calcineurin inhibitor withdrawal prevents progressive left ventricular diastolic dysfunction in renal transplant recipients. 2012 Transplantation pmid:22955227
Florman S et al. Once-daily tacrolimus extended release formulation: experience at 2 years postconversion from a Prograf-based regimen in stable liver transplant recipients. 2007 Transplantation pmid:17589349
Armitage JM et al. Preliminary experience with FK506 in thoracic transplantation. 1991 Transplantation pmid:1713363
Jain AB et al. Capillary blood versus arterial or venous blood for tacrolimus monitoring in liver transplantation. 1995 Transplantation pmid:7545836
Vincenti F et al. One-year follow-up of an open-label trial of FK506 for primary kidney transplantation. A report of the U.S. Multicenter FK506 Kidney Transplant Group. 1996 Transplantation pmid:8669100
Dean PG et al. Wound-healing complications after kidney transplantation: a prospective, randomized comparison of sirolimus and tacrolimus. 2004 Transplantation pmid:15239621
Tian L et al. Association of the CD134/CD134L costimulatory pathway with acute rejection of small bowel allograft. 2002 Transplantation pmid:12134113
Gillard P et al. Comparison of sirolimus alone with sirolimus plus tacrolimus in type 1 diabetic recipients of cultured islet cell grafts. 2008 Transplantation pmid:18212631